275 research outputs found
Role of Self-Interaction Effects in the Geometry Optimization of Small Metal Clusters
By combining the Self-Interaction Correction (SIC) with pseudopotential
perturbation theory, the role of self-interaction errors inherent to the Local
Density Approximation (LDA) to Density Functional Theory is estimated in the
determination of ground state and low energy isomeric structures of small
metallic clusters. Its application to neutral sodium clusters with 8 and 20
atoms shows that the SIC provides sizeable effects in Na_8, leading to a
different ordering of the low lying isomeric states compared with ab-initio LDA
predictions, whereas for Na_20, the SIC effects are less pronounced, such that
a quantitative agreement is achieved between the present method and ab-initio
LDA calculations.Comment: RevTeX, 4 pages, 1 figure available from [email protected]
Ab initio simulations of liquid systems: Concentration dependence of the electric conductivity of NaSn alloys
Liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80%
sodium) are studied using density functional calculations combined with
molecular dynamics(Car-Parrinello method). The frequency-dependent electric
conductivities for the systems are calculated by means of the Kubo-Greenwood
formula.
The extrapolated DC conductivities are in good agreement with the
experimental data and reproduce the strong variation with the concentration.
The maximum of conductivity is obtained, in agreement with experiment, near the
equimolar composition.
The strong variation of conductivity, ranging from almost semiconducting up
to metallic behaviour, can be understood by an analysis of the
densities-of-states.Comment: LaTex 6 pages and 2 figures, to appear in J.Phys. Cond. Ma
Time-dependent screening of a positive charge distribution in metals: Excitons on an ultra-short time scale
Experiments determining the lifetime of excited electrons in crystalline
copper reveal states which cannot be interpreted as Bloch states [S. Ogawa {\it
et al.}, Phys. Rev. B {\bf 55}, 10869 (1997)]. In this article we propose a
model which explains these states as transient excitonic states in metals. The
physical background of transient excitons is the finite time a system needs to
react to an external perturbation, in other words, the time which is needed to
build up a polarization cloud. This process can be probed with modern
ultra-short laser pulses. We calculate the time-dependent density-response
function within the jellium model and for real Cu. From this knowledge it is
possible within linear response theory to calculate the time needed to screen a
positive charge distribution and -- on top of this -- to determine excitonic
binding energies. Our results lead to the interpretation of the experimentally
detected states as transient excitonic states.Comment: 24 pages, 9 figures, to appear in Phys. Rev. B, Nov. 15, 2000, issue
2
Plasmon Lifetime in K: A Case Study of Correlated Electrons in Solids Amenable to Ab Initio Theory
On the basis of a new ab initio, all-electron response scheme, formulated
within time-dependent density-functional theory, we solve the puzzle posed by
the anomalous dispersion of the plasmon linewidth in K. The key damping
mechanism is shown to be decay into particle-hole pairs involving empty states
of d-symmetry. While the effect of many-particle correlations is small, the
correlations built into the "final-state" -d-bands play an important, and
novel, role ---which is related to the phase-space complexity associated with
these flat bands. Our case study of plasmon lifetime in K illustrates the
importance of ab initio paradigms for the study of excitations in
correlated-electron systems.Comment: 12 pages, 4 figures, for html browsing see http://web.utk.edu/~weik
Effect of Semicore Orbitals on the Electronic Band Gaps of Si, Ge, and GaAs within the GW Approximation
We study the effect of semicore states on the self-energy corrections and
electronic energy gaps of silicon, germanium and GaAs. Self-energy effects are
computed within the GW approach, and electronic states are expanded in a
plane-wave basis. For these materials, we generate {\it ab initio}
pseudopotentials treating as valence states the outermost two shells of atomic
orbitals, rather than only the outermost valence shell as in traditional
pseudopotential calculations. The resulting direct and indirect energy gaps are
compared with experimental measurements and with previous calculations based on
pseudopotential and ``all-electron'' approaches. Our results show that,
contrary to recent claims, self-energy effects due to semicore states on the
band gaps can be well accounted for in the standard valence-only
pseudopotential formalism.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
Dynamics of Excited Electrons in Copper: Role of Auger Electrons
Within a theoretical model based on the Boltzmann equation, we analyze in
detail the structure of the unusual peak recently observed in the relaxation
time in Cu. In particular, we discuss the role of Auger electrons in the
electron dynamics and its dependence on the d-hole lifetime, the optical
transition matrix elements and the laser pulse duration. We find that the Auger
contribution to the distribution is very sensitive to both the d-hole lifetime
tau_h and the laser pulse duration tau_l and can be expressed as a monotonic
function of tau_l/tau_h. We have found that for a given tau_h, the Auger
contribution is significantly smaller for a short pulse duration than for a
longer one. We show that the relaxation time at the peak depends linearly on
the d-hole lifetime, but interestingly not on the amount of Auger electrons
generated. We provide a simple expression for the relaxation time of excited
electrons which shows that its shape can be understood by a phase space
argument and its amplitude is governed by the d-hole lifetime. We also find
that the height of the peak depends on both the ratio of the optical transition
matrix elements R=|M_{d \to sp}|^2/|M_{sp \to sp}|^2 and the laser pulse
duration. Assuming a reasonable value for the ratio, namely R = 2, and a d-hole
lifetime of tau_h=35 fs, we obtain for the calculated height of the peak Delta
tau_{th}=14 fs, in fair agreement with Delta tau_{exp} \approx 17 fs measured
for polycrystalline Cu.Comment: 6 pages, 6 figure
Hole dynamics in noble metals
We present a detailed analysis of hole dynamics in noble metals (Cu and Au),
by means of first-principles many-body calculations. While holes in a
free-electron gas are known to live shorter than electrons with the same
excitation energy, our results indicate that d-holes in noble metals exhibit
longer inelastic lifetimes than excited sp-electrons, in agreement with
experiment. The density of states available for d-hole decay is larger than
that for the decay of excited electrons; however, the small overlap between d-
and sp-states below the Fermi level increases the d-hole lifetime. The impact
of d-hole dynamics on electron-hole correlation effects, which are of relevance
in the analysis of time-resolved two-photon photoemission experiments, is also
addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let
Response theory for time-resolved second-harmonic generation and two-photon photoemission
A unified response theory for the time-resolved nonlinear light generation
and two-photon photoemission (2PPE) from metal surfaces is presented. The
theory allows to describe the dependence of the nonlinear optical response and
the photoelectron yield, respectively, on the time dependence of the exciting
light field. Quantum-mechanical interference effects affect the results
significantly. Contributions to 2PPE due to the optical nonlinearity of the
surface region are derived and shown to be relevant close to a plasmon
resonance. The interplay between pulse shape, relaxation times of excited
electrons, and band structure is analyzed directly in the time domain. While
our theory works for arbitrary pulse shapes, we mainly focus on the case of two
pulses of the same mean frequency. Difficulties in extracting relaxation rates
from pump-probe experiments are discussed, for example due to the effect of
detuning of intermediate states on the interference. The theory also allows to
determine the range of validity of the optical Bloch equations and of
semiclassical rate equations, respectively. Finally, we discuss how collective
plasma excitations affect the nonlinear optical response and 2PPE.Comment: 27 pages, including 11 figures, version as publishe
- …