440 research outputs found

    Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions

    Get PDF
    Free radical reactions are an important degradation process for organic compounds within the aqueous atmospheric environment. Nevertheless, non-radical oxidants such as hydrogen peroxide and ozone also contribute to the degradation and conversion of these substances (Tilgner and Herrmann, 2010). In this work, kinetic investigations of non-radical reactions were conducted using UV / Vis spectroscopy (dual-beam spectrophotometer and stopped flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics to reactions of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acid as well as methacrolein (MACR) and methyl vinyl ketone (MVK) with H2O2 and ozone at 298 K. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M−1 s−1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH• ~109 M−1 s−1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated first-order conversion rate constants change the picture towards H2O2 reactions becoming more important, especially when compared to the nitrate radical. For some reactions mechanistic suggestions are also given

    Schetsboek windturbines & ruimtelijke kwaliteit; landschappelijk onderzoek naar vides en concentratiegebieden

    Get PDF
    Dit schetsboek voor landschapsontwerp is gemaakt door Alterra, Bosch Slabbers tuin- en landschapsarchitecten en Buro Schöne, in opdracht van VROM, DG Ruimte. Deze landschapsvisie past in het kader van het Nationaal Plan van Aanpak Windenergi

    8.2 ka event North Sea hydrography determined by bivalve shell stable isotope geochemistry

    Get PDF
    The abrupt 8.2 ka cold event has been widely described from Greenland and North Atlantic records. However, its expression in shelf seas is poorly documented, and the temporal resolution of most marine records is inadequate to precisely determine the chronology of major events. A robust hydrographical reconstruction can provide an insight on climatic reaction times to perturbations to the Atlantic Meridional Overturning Circulation. Here we present an annually-resolved temperature and water column stratification reconstruction based on stable isotope geochemistry of Arctica islandica shells from the Fladen Ground (northern North Sea) temporally coherent with Greenland ice core records. Our age model is based on a growth increment chronology obtained from four radiometrically-dated shells covering the 8290–8100 cal BP interval. Our results indicate that a sudden sea level rise (SSLR) event-driven column stratification occurred between ages 8320–8220 cal BP. Thirty years later, cold conditions inhibited water column stratification but an eventual incursion of sub-Arctic waters into the North Sea re-established density-driven stratification. The water temperatures reached their minimum of ~3.7 °C 55 years after the SSLR. Intermittently-mixed conditions were later established when the sub-Arctic waters receded

    Life history, environment and extinction of the scallop Carolinapecten eboreus (Conrad) in the Plio-Pleistocene of the U.S. eastern seaboard.

    Get PDF
    Plio-Pleistocene mass extinction of marine bivalves on the U.S. eastern seaboard has been attributed to declines in temperature and primary production. We investigate the relationship of growth rate in the scallop Carolinapecten eboreus to variation in these parameters to determine which contributed to its extinction. We use ontogenetic profiles of shell d18O to estimate growth rate and seasonal temperature, microgrowth-increment data to validate d18O-based figures for growth rate, and shell d13C to supplement assemblage evidence of production. Postlarval growth started in the spring/summer in individuals from the Middle Atlantic Coastal Plain but in the autumn/winter in some from the Gulf Coastal Plain. Growth rate typically declined with age and was usually higher in summer than winter. Many individuals died in winter but the largest forms typically died in spring, possibly on spawning for the first time. No individuals lived longer than two years and some grew exceedingly fast overall, up to 60% more rapidly than any other scallop species (, 145.7 mm in a year). Faster growth was generally achieved by secreting more rather than larger microgrowth increments. Some very fast-growing individuals lived in settings of high production and low temperature. No individuals grew slowly under high production whereas most if not all grew slowly under ‘average’ production and low temperature. In that the rapid growth evidently enabled by high production would have afforded protection from predators, Plio-Pleistocene decline in production was probably contributory to the extinction of C. eboreus. However, the negative impact of low temperature on growth under ‘average’ production suggests that temperature decline played some part.British Geological Survey (BUFI S157), NERC Isotope Goscience Facilities (IP-1351-1112), University of Derby (Research-Inspired Curriculum Fund

    Anti-predation strategy, growth rate and extinction amongst Pliocene scallops of the US eastern seaboard

    Get PDF
    Placopecten, Chesapecten and Carolinapecten are scallop (pectinid bivalve) genera occurring in the Pliocene of the US eastern seaboard. The first, present in the area today, is a smooth, streamlined form, adept at escaping predators by swimming (‘flight’ strategy). The other two, which are extinct, are plicate (‘ribbed’) forms. Plication facilitates a ‘resistance’ strategy towards predators which is benefited by large size and high shell thickness - maximally so if these states are achieved early in life. Oxygen isotope profiles show that early ontogenetic extensional growth in Pliocene Placopecten was at the same moderate rate as in modern Placopecten. By contrast, in Chesapecten it was as fast as in the fastest-growing modern scallop (c. 80 mm/annum), and accompanied by development of an unusually thick shell, while in Carolinapecten it was substantially faster still (<150 mm/annum). Rapid growth in Chesapecten and Carolinapecten was probably enabled by high primary productivity, for which there is evidence from sediment composition and the associated biota. The extinction of Chesapecten and Carolinapecten, and the survival of Placopecten, can be attributed to a decline in primary productivity which prevented a maximally effective ‘resistance’ strategy towards predators but had no deleterious impact on a ‘flight’ strategy.British Geological Survey (BUFI S157

    The use of seasonally resolved temperature data to identify the cause of marine climate change

    Get PDF
    On the continental shelf of the eastern USA, seasonal variation in water temperature is much lower south of Cape Hatteras than it is to the north as a result of the influence of warm currents, which raise winter temperature. High temperatures north of Cape Hatteras during the Pliocene have been attributed to greater northward penetration of warm currents in the absence of a feature analogous to Cape Hatteras. However, oxygen isotope thermometry using serial ontogenetic samples from scallops reveals a high seasonal temperature range at some horizons, suggesting that overall warming was the consequence of general climate change, with the absence of a ‘Cape Hatteras’ feature allowing greater southward penetration of cold currents, resulting in low winter temperatures at a southerly latitude. Evidence from other taxa indicates that at times seasonal variation in water temperature was quite low and that there was greater northward penetration of warm currents. This may relate to increases in vigour of the Gulf Stream. The study shows how seasonally resolved temperature data can assist identification of the driving forces of marine climate change.British Geological Survey (BUFI S157

    Isotopic temperatures from the early and mid-pliocene of the US Middle Atlantic coastal plain, and their implications for the cause of regional marine climate change

    Get PDF
    Mean seasonal extreme temperatures on the seafloor calculated from the shell δ18O of the scallop Placopecten clintonius from the basal part of the early Pliocene Sunken Meadow Member (Yorktown Formation) in Virginia are very similar to those from the same horizon at the latitude of Cape Hatteras in North Carolina (~210 km to the south). The lowest and highest temperatures calculated from each shell (using δ18Oseawater = +0.7‰) give mean values for winter and summer of 8.4 ± 1.1 °C (± 1σ) and 18.2 ± 0.6 °C in Virginia, and 8.6 ± 0.4 °C and 16.5 ± 1.1 °C in North Carolina (respective median temperatures: 13.3 °C and 12.6 °C). Patterns of ontogenetic variation in δ18O, δ13C and microgrowth increment size indicate summer water-column stratification in both areas, with summer surface temperatures perhaps 6 °C higher than on the seafloor. The low winter paleotemperatures in both areas are most simply explained by the greater southward penetration of cool northern waters in the absence of a feature equivalent to Cape Hatteras. The same current configuration but a warmer general climate can account for the high benthic seasonal range (over 15.0 °C in some cases) but warmer median temperatures (15.7-21.3 °C) derived from existing δ18O data from scallops of the higher Yorktown Formation (using δ18Oseawater = +0.7‰ for the upper Sunken Meadow Member and δ18Oseawater = +1.1‰ for the mid-Pliocene Rushmere, Morgarts Beach and Moore House members). Existing δ18O data from the infaunal bivalve Mercenaria of the Rushmere Member yields a similarly high median temperature (21.6 °C) but a low seasonal range (9.2 °C), pointing to the periodic influence of warm currents, possibly at times when the Gulf Stream was exceptionally vigorous.British Geological Survey (BUFI S157 Studentship); UoD Research-Inspired Curriculum Fun

    Shell microstructures (disturbance lines) of Arctica islandica (Bivalvia): a potential proxy for severe oxygen depletion

    Get PDF
    The spread of oxygen deficiency in nearshore coastal habitats endangers benthic communities. To better understand the mechanisms leading to oxygen depletion and eventually hypoxia, predict the future development of affected ecosystems, and define suitable mitigation strategies requires detailed knowledge of the dissolved oxygen (DO) history. Suitable high-resolution DO archives covering coherent time intervals of decades to centuries include bivalve shells. Here, we explored if the microstructure, specifically disturbance lines, in shells of Arctica islandica from the Baltic Sea can be used as an alternative or complementary proxy to Mn/Cashell to track the frequency and severity of past low-DO events. Disturbance lines differ from periodic annual growth lines by the presence of fine complex crossed lamellae instead of irregular simple prisms. Aside from a qualitative assessment of microstructural changes, the morphology of individual biomineral units (BMUs) was quantitatively determined by artificial intelligence-assisted image analysis to derive models for DO reconstruction. As demonstrated, Mn-rich disturbance lines can provide a proxy for past deoxygenation events (i.e., DO &lt; 45 µmol/L), but it currently remains unresolved if low DO leads to microstructurally distinct features that differ from those caused by other environmental stressors. At least in studied specimens from the Baltic Sea and Iceland, low temperature, salinity near the lower physiological tolerance, or food scarcity did not result in disturbance lines. With decreasing DO supply, disturbance lines seem to become more prominent, contain more Mn, and consist of increasingly smaller and more elongated BMUs with a larger perimeter-to-area ratio. Although the relationship between DO and BMU size or elongation was statistically significant, the explained variability (&lt;1.5%) was too small and the error too large to reconstruct DO values. BMU parameters may reveal a closer relationship with DO if studied in three dimensions and if the DO content was determined at high resolution, directly at the position where the bivalves lived, something that future work should address

    Velocity Dependence Of One- And Two-electron Processes In Intermediate-velocity Ar16++He Collisions

    Get PDF
    We report investigations of one- and two-electron processes in the collisions of 0.9-keV/u to 60-keV/u (vp=0.19-1.55 a.u.) Ar16+ ions with He targets. The cross sections for these processes were measured by observing the final charges of the Ar ions and the recoiling target ions in coincidence. The average Q values for the capture channels were determined by measuring the longitudinal momenta of the recoiling target ions. Single capture (SC) is the dominant process and is relatively independent of the projectile energy. The two-electron transfer-ionization (TI) process is the next largest and slowly increases with projectile energy. The Q values for both SC and TI decrease with increasing projectile energy. Our data thereby suggest that electrons are captured into less tightly bound states as the collision velocity is increased. Both double capture and single ionization are much smaller and fairly independent of the projectile energy. The energy independence of SI is somewhat surprising as our energy range spans the region of the target electron velocity where ionization would be expected to increase. Our analysis suggests that the ionization process is being suppressed by SC and TI processes. © 1993 The American Physical Society

    Effect of Semicore Orbitals on the Electronic Band Gaps of Si, Ge, and GaAs within the GW Approximation

    Full text link
    We study the effect of semicore states on the self-energy corrections and electronic energy gaps of silicon, germanium and GaAs. Self-energy effects are computed within the GW approach, and electronic states are expanded in a plane-wave basis. For these materials, we generate {\it ab initio} pseudopotentials treating as valence states the outermost two shells of atomic orbitals, rather than only the outermost valence shell as in traditional pseudopotential calculations. The resulting direct and indirect energy gaps are compared with experimental measurements and with previous calculations based on pseudopotential and ``all-electron'' approaches. Our results show that, contrary to recent claims, self-energy effects due to semicore states on the band gaps can be well accounted for in the standard valence-only pseudopotential formalism.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
    • …
    corecore