12,363 research outputs found

    Fidelity amplitude of the scattering matrix in microwave cavities

    Full text link
    The concept of fidelity decay is discussed from the point of view of the scattering matrix, and the scattering fidelity is introduced as the parametric cross-correlation of a given S-matrix element, taken in the time domain, normalized by the corresponding autocorrelation function. We show that for chaotic systems, this quantity represents the usual fidelity amplitude, if appropriate ensemble and/or energy averages are taken. We present a microwave experiment where the scattering fidelity is measured for an ensemble of chaotic systems. The results are in excellent agreement with random matrix theory for the standard fidelity amplitude. The only parameter, namely the perturbation strength could be determined independently from level dynamics of the system, thus providing a parameter free agreement between theory and experiment

    Intrinsic quark transverse momentum in the nucleon from lattice QCD

    Full text link
    A better understanding of transverse momentum (k_T-) dependent quark distributions in a hadron is needed to interpret several experimentally observed large angular asymmetries and to clarify the fundamental role of gauge links in non-abelian gauge theories. Based on manifestly non-local gauge invariant quark operators we introduce process-independent k_T-distributions and study their properties in lattice QCD. We find that the longitudinal and transverse momentum dependence approximately factorizes, in contrast to the behavior of generalized parton distributions. The resulting quark k_T-probability densities for the nucleon show characteristic dipole deformations due to correlations between intrinsic k_T and the quark or nucleon spin. Our lattice calculations are based on N_f=2+1 mixed action propagators of the LHP collaboration.Comment: 4 pages, 3 figure

    Dynamics of photoinduced Charge Density Wave-metal phase transition in K0.3MoO3

    Full text link
    We present first systematic studies of the photoinduced phase transition from the ground charge density wave (CDW) state to the normal metallic (M) state in the prototype quasi-1D CDW system K0.3MoO3. Ultrafast non-thermal CDW melting is achieved at the absorbed energy density that corresponds to the electronic energy difference between the metallic and CDW states. The results imply that on the sub-picosecond timescale when melting and subsequent initial recovery of the electronic order takes place the lattice remains unperturbed.Comment: Phys. Rev. Lett., accepted for publicatio

    Fidelity recovery in chaotic systems and the Debye-Waller factor

    Full text link
    Using supersymmetry calculations and random matrix simulations, we studied the decay of the average of the fidelity amplitude f_epsilon(tau)=<psi(0)| exp(2 pi i H_epsilon tau) exp(-2 pi i H_0 tau) |psi(0)>, where H_epsilon differs from H_0 by a slight perturbation characterized by the parameter epsilon. For strong perturbations a recovery of f_epsilon(tau) at the Heisenberg time tau=1 is found. It is most pronounced for the Gaussian symplectic ensemble, and least for the Gaussian orthogonal one. Using Dyson's Brownian motion model for an eigenvalue crystal, the recovery is interpreted in terms of a spectral analogue of the Debye-Waller factor known from solid state physics, describing the decrease of X-ray and neutron diffraction peaks with temperature due to lattice vibrations.Comment: revised version (major changes), 4 pages, 4 figure

    Optimizing the third-and-a-half post-Newtonian gravitational radiation-reaction force for numerical simulations

    Full text link
    The gravitational radiation-reaction force acting on perfect fluids at 3.5 post-Newtonian order is cast into a form which is directly applicable to numerical simulations. Extensive use is made of metric-coefficient changes induced by functional coordinate transformations, of the continuity equation, as well as of the equations of motion. We also present an expression appropriate for numerical simulations of the radiation field causing the worked out reaction force.Comment: 22 pages to appear in Physical Review

    Non-Perturbative Dilepton Production from a Quark-Gluon Plasma

    Full text link
    The dilepton production rate from the quark-gluon plasma is calculated from the imaginary part of the photon self energy using a quark propagator that contains the gluon condensate. The low mass dilepton rate obtained in this way exhibits interesting structures (peaks and gaps), which might be observable at RHIC and LHC.Comment: 16 pages, REVTEX, 8 PostScript figure

    Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots

    Full text link
    The time evolution of optically excited carriers in semiconductor quantum wells and quantum dots is analyzed for their interaction with LO-phonons. Both the full two-time Green's function formalism and the one-time approximation provided by the generalized Kadanoff-Baym ansatz are considered, in order to compare their description of relaxation processes. It is shown that the two-time quantum kinetics leads to thermalization in all the examined cases, which is not the case for the one-time approach in the intermediate-coupling regime, even though it provides convergence to a steady state. The thermalization criterion used is the Kubo-Martin-Schwinger condition.Comment: 7 pages, 8 figures, accepted for publication in Phys. Rev.

    Quantum kinetic description of Coulomb effects in one-dimensional nano-transistors

    Get PDF
    In this article, we combine the modified electrostatics of a one-dimensional transistor structure with a quantum kinetic formulation of Coulomb interaction and nonequilibrium transport. A multi-configurational self-consistent Green's function approach is presented, accounting for fluctuating electron numbers. On this basis we provide a theory for the simulation of electronic transport and quantum charging effects in nano-transistors, such as gated carbon nanotube and whisker devices and one-dimensional CMOS transistors. Single-electron charging effects arise naturally as a consequence of the Coulomb repulsion within the channel
    • …
    corecore