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In this paper, we combine the modified electrostatics of a one-dimensional transistor structure with a
quantum kinetic formulation of Coulomb interaction and nonequilibrium transport. A multi-configurational
self-consistent Green’s function approach is presented, accounting for fluctuating electron numbers. On this
basis we provide a theory for the simulation of electronic transport and quantum charging effects in nanotrans-
istors, such as a gated carbon nanotube and whisker devices and one-dimensional CMOS transistors. Single-
electron charging effects arise naturally as a consequence of the Coulomb repulsion within the channel.
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I. INTRODUCTION

As scaling of field-effect-transistor �FET� devices reaches
the decananometer regime, multigate architectures, and ultra-
thin active channel regions are mandatory in order to pre-
serve electrostatic integrity. It has been shown that a coaxi-
ally gated nanowire represents the ideal device structure for
ultimately scaled FETs.1,2 A variety of one-dimensional �1D�
nanostructures—such as carbon nanotubes, silicon nano-
wires, or compound semiconductor nanowhiskers—have
been demonstrated and intensive research has been devoted
to the realization of field-effect-transistor action in these
nanostructures.3–6 Due to the small lateral extent in the na-
nometer range, electronic transport through such nanowires
is one dimensional with only a few or even a single trans-
verse mode participating in the current. As a result, increas-
ingly less electrons are involved in the switching of a nano-
wire transistor. In fact, even in devices with a rather long
channel lengths of 100 nm, only on the order of 1–10 elec-
trons constitute the charge in the channel for on-state voltage
conditions. Hence, single-electron charging effects are in-
creasingly important and have to be taken into account.7–9

Two different approaches are commonly used to describe
electronic transport in nano-transistors: A quantum kinetic
approach based on the real-time Green’s functions provides
an excellent description of nonequilibrium states.10–12 Here,
the Coulomb interaction is described in terms of a self-
consistent Hartree potential, optionally combined with a
spin-density-functional exchange-correlation term in local
density approximation �LDA-SDFT�. However, this frame-
work does not account for single-electron charging effects
without forcing integer electron numbers. Alternatively, the
second approach considers a quasi-isolated nanosystem with
a many-body formulation of Coulomb interaction, including
electronic transport on a basis of rate equations.13–19 While
predicting single-electron charging effects correctly, the lat-
ter neglects dissipation and renormalization effects due to the
source and drain contacts.

Here, we present an approach that allows us to combine a
quantum kinetic description of nonequilibrium electron

transport with nonlocal many-body Coulomb effects in one-
dimensional FET nanodevices for application-relevant tem-
peratures. Within our approach, single-electron charging ef-
fects arise naturally as a consequence of the Coulomb
interaction. Our formalism contains two central ingredients:
In order to cope with particle-number fluctuations �i.e., non-
integer expectation values� under nonequilibrium conditions,
we introduce a multiconfigurational self-consistent Green’s
function algorithm. Second, we consider a one-dimensional
Coulomb Green’s function for the transistor channel that al-
lows us to properly incorporate many-body interaction ef-
fects into a quantum kinetic approach with electrostatic
boundary conditions for a realistic FET. As an example, we
calculate the transfer characteristics of a nanowire transistor
with Schottky barriers �SB� at the contact-channel interfaces.

II. COULOMB GREEN’S FUNCTION

Consider a coaxially gated field-effect-transistor, as illus-
trated in Fig. 1. A cylindrical semiconducting channel mate-
rial is surrounded by a thin dielectric and a metallic gate
electrode. The electrostatic potential V inside such a one-
dimensional �1D� transistor channel obeys a modified Pois-
son equation,1,20

FIG. 1. Schematic view of a 1D FET geometry. �dox and dch

denote the gate insulator thickness and the channel diameter of the
nanotransistor, respectively.�
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where � is the 1D charge density. VG denotes the gate poten-
tial and S=�dch

2 /4 is the effective cross-sectional area. The
characteristic length � is related to the spatial separation of
the gate electrode from the channel �which should be smaller
than the total length L of the channel�.1,20 Note that Eq. �1� is
an appropriate description for coaxial as well as planar tran-
sistor geometries, differing only in the characteristic length
�. In the following, we assume perfect metallic source and
drain contacts at the boundaries, yielding fixed-potential
boundary conditions due to given chemical potentials within
these contacts.

A key ingredient in our formalism is the usage of a Cou-
lomb Green’s function21 for the description of charge inter-
action within the channel. This allows us to formulate clas-
sical electrostatics �with boundary conditions� and the many-
body interaction between electrons on equal footing. The
corresponding Coulomb Green’s function of the gated chan-
nel �with 0�x ,x��L and vanishing potential at the bound-
aries 0 ,L� can readily be obtained as
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�In contrast, if we considered open boundary conditions, we
would obtain v�x ,x��= �� /2�exp�−�x−x�� /�� instead.	 For a
given charge density � inside the channel, the potential thus
reads as

V�x� =
1
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 dx� v�x,x����x�� + Vext�x� , �3�

with the external potential contribution
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where VS and VD denote the contact potentials.

III. SYSTEM HAMILTONIAN

In this paper, we make use of a tight-binding description
of the channel, represented by a localized 1D single-particle
basis �� j�x ,��� �where the single-particle index j represents
a combined orbital, site, and spin multi-index.� The total sys-
tem Hamiltonian H=H0+Hee+HS+HD can be split into four

parts. H0 contains all single-particle terms of the transistor
channel:

H0 = 
j,k

hjkcj
†ck,

hjk = − e
�

 dx � j

*�x,���k�x,���Vdop�x� + Vext�x�	

+ 	 jkdj + tjk, �5�

with the electron annihilation operator cj for state j. The
composition of the channel �material-specific properties,
layer sequence, etc.� and possible terms due to image charges
in the contacts are described by dj and off-diagonal hopping
matrix elements tjk.

22,23 Vdop denotes the potential resulting
from fixed charges �dop �due to ionized doping atoms�,
whereas Vext stems from external charges due to the applied
drain-source voltage and the gate influence �see Eq. �4�	.

Furthermore, HS and HD are the Hamiltonians for the
source and drain contacts, respectively. The latter also con-
tain the corresponding hopping terms to the outer ends of the
channel region, providing electron injection and absorption.
Each contact is assumed to be in a state of local equilibrium
with an individual chemical potential according to the ap-
plied voltage. �See also Eq. �12� below.	

Most importantly, Hee describes the many-body Coulomb
interaction between electrons within the channel region,19

Hee =
1

2 
m,j,k,l

Vmjklcm
† cj

†ckcl, �6�

with Coulomb matrix elements

Vmjkl =
e2

�0�chS

�,��


 dx
 dx� v�x,x��


 �m
* �x,��� j

*�x�,����k�x�,����l�x,�� , �7�

which employ the Coulomb Green’s function, Eq. �2�.

IV. QUANTUM KINETICS

A quantum kinetic description of the system �under non-
equilibrium conditions, in particular� is obtained via the us-
age of a real-time Green’s functions formalism.24–26 The re-
tarded and lesser �two-point� Green’s functions in the time
domain are given by

Gjk
r �t� = − i��t���cj�t�,ck

†�0��� ,

Gjk
��t� = i�ck

†�0�cj�t�� , �8�

for steady-state conditions. In the following, we will con-
sider the Fourier transformed functions, defined via G�E�
= �1/��dt exp�iEt /�G�t�.

In matrix notation, the Dyson equation for the channel can
be written as10,25–27
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Gr = Gr0 + Gr0rGr,

G� = �1 + Grr�G�0�aGa + 1� + Gr�Ga, �9�

where Gr0��E−h+ i��−1 �with �→0+� and Ga=Gr†. We as-
sume G�0�0, which means that the channel remains empty
without contacts. For application-relevant temperatures T
well above the Kondo temperature of the system, the Cou-
lomb interaction can be treated independently of the contact
coupling, albeit self-consistently. Within this approximation,
the total self-energy �=�ee+�S+�D can be written as a sum
of a Coulomb interaction term �ee and two contact terms �S,
�D of a noninteracting form.

Once G� has been obtained self-consistently from Eq. �9�,
observables like the electron density �e and the current Ie
�through an arbitrary layer at x0� can be calculated via

�e�x,�� = − e
j,k

� j
*�x,���k�x,���̂ jk,

Ie = −
e



j,k

xj�x0,

xk�x0

2 Im�tjk�̂ jk� , �10�

with the single-particle density matrix

�̂ jk =
1

2�

 dE

1

i
Gkj

��E� . �11�

The effective contact self-energies due to the coupling of
the channel to the source and drain regions �c=S ,D� can be
obtained as10,27,28

cjk

r �E� = 
p,q�c

tcjp
Gcpq

r0 �E�tcqk
, �12�

with the isolated contact Green’s function Gc
r0 and contact-

channel hopping terms tc. The corresponding lesser self-
energy reads as �c

�= ifc�c, where �c� i��c
r −�c

a�. fS and fD

are the local source and drain Fermi distribution functions,
respectively, assuming local equilibrium within these reser-
voirs. �Note that �c is a source for renormalization and dis-
sipation.�

The evaluation of the Coulomb self-energy requires a
suitable approximation scheme due to the infinite Green’s
function hierarchy �which is a consequence of the two-
particle interaction�. As a first-order expansion �Hartree-Fock
diagrams�, four-point Green’s functions can be factorized
into linear combinations of products of two-point
functions.24,27 Using this approximation, the Coulomb self-
energy reads as

�eeml

r = 
j,k

�Vmjkl − Vjmkl��̂ jk. �13�

Note that �ee
� =0, and �ee

r is nonlocal, Hermitian and energy
independent �static� within the considered approximation
scheme; compare also with Ref. 27. For convenience, the
Hartree potential �the first V term in Eq. �13�	,

VH�x� =
1

�0�chS

��

 dx� v�x,x���e�x�,��� , �14�

can be separated from the retarded Coulomb self-energy
�compare Eq. �3�	, where the electron charge density �e is
given by Eq. �10�. Hence, the total electrostatic potential of
the system reads as V=Vdop+VH+Vext.

For integer-number electron-filling conditions, Eq. �13�
provides an excellent description of the system for
application-relevant temperatures. However, under nonequi-
librium conditions, one has to deal with noninteger average
filling situations, which are beyond the scope of a first-order
�mean-field� self-energy in general. In the following section,
we will therefore present a multiconfigurational approach
that is able to cope with such particle-number fluctuations �of
the quantum statistical ensemble�.

V. MULTICONFIGURATIONAL SELF-CONSISTENT
GREEN’S FUNCTION

A thermodynamic state of the transistor channel with fluc-
tuating electron number can be considered as a weighted
mixture of many-body states with integer filling �configura-
tions� of relevant single-particle states. For a given G�, “rel-
evant” single-particle states of the channel are defined as
eigenstates of the matrix �̂ �Eq. �11�	 that exhibit significant
occupation fluctuations and have a sufficiently small dephas-
ing �due to the contact coupling�, thus focusing on resonantly
trapped �i.e., quasibound� electrons. �Typically, among the
eigenstates of �̂ there are also evanescent states that are rem-
nants of the contact modes, exhibiting strong dissipation.�
The corresponding eigenvalues of �̂ can be interpreted as
nonequilibrium occupation numbers. This projection to a rel-
evant single-particle subspace of dimension N reduces the
resulting Fock subspace dimension 2N significantly, render-
ing this approach numerically feasible. The main idea behind
the following considerations is to treat the interaction of rel-
evant states and their contribution to �ee in a many-body
multi-configurational manner, whereas all remaining states
are descibed conventionally by means of their mean-field
contributions to �ee via �̂ only.

For each configuration �, a corresponding single-particle
density-matrix �̂� can be derived from �̂. We assume that the
Coulomb self-energy approximation, Eq. �13�, becomes ad-
equate for each configuration, defining a set of self-energies
�ee

r ��̂�	 �which need not be self-consistent individually�.
Then the Green’s function can be written as a configuration
average:

Ḡ = 
�

w�G��̂�	 , �15�

where w� denotes the weight of configuration �. G��̂�	 is the
corresponding Green’s function �retarded and lesser� that is
obtained by using Eq. �9� with an individual �ee

r ��̂�	.
Within the relevant Fock subspace, a projected many-

body Hamiltonian matrix can be defined as
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H��
MB = ���H0 + Hee + Hee

ext + Hre
ext��� , �16�

where ��� denotes a relevant Fock basis state. H0 and Hee are
defined in Eqs. �5� and �6�, respectively. Hee

ext describes the
mean-field interaction of relevant states with the rest �which
vanishes in ���Hee����:

Hee
ext = 

j,k
�eejk

r ��̂�=vac	cj
†ck, �17�

where ��=vac is the single-particle density matrix for the
vacuum configuration within the relevant subspace. Further-
more, Hre

ext contains projected renormalization terms due to
the contacts �i.e., the Hermitian part of �c

r of Eq. �12� evalu-
ated at suitable energies	. Note that the configurations de-
fined above might not be exact eigenstates of HMB. In the
following, we restrict ourselves to the dominant diagonal el-
ements E�=H��

MB and neglect projected dissipation terms.
The weight vector w defines a projected nonequilibrium

many-body statistical operator in the relevant Fock basis.
Consequently, the resulting many-body lesser Green’s func-
tion �containing relevant states only� in a Lehmann represen-
tation reads as

GMB
� �w	 jk�t� = i

�,�
w�e�i/��E�−E��t���ck

†������cj��� , �18�

where ��� denotes a relevant Fock state with energy E�. In
principle, w must be chosen such that GMB

� �w	 resembles the
given G� for contributions originating from relevant states,
i.e., ��GMB

� �w	 ,G��=min within the relevant subspace,
where � measures the cumulative difference of spectral
weights of corresponding resonances. However, for many ap-
plications it is sufficient to consider a vector w that maxi-
mizes the entropy at an effective temperature T*�T ,VG ,VD�
under the �weaker� subsidiary condition that �w��̂�= �̂.
With this approximation we obtain19,29,30

w� =
1

Z
exp�−

1

kBT*�E� − 
r

�rnr����� , �19�

where Z is a normalization constant. nr denotes the occupa-
tion number of the relevant single-particle state r, and �r
represents the individual chemical potential that is a
Lagrange parameter for the subsidiary condition above. �Un-
der moderate bias conditions, it is justified to assume T*

�T.�
In turn, Ḡ� from Eq. �15� for this w can be taken as a new

G�, serving as an input for the calculation scheme described

above. This defines a self-consistency procedure for Ḡ and
w, which we refer to as the multiconfigurational self-
consistent Green’s function algorithm �MCSCG�. Such an
approach resembles the multiconfigurational self-consistent
field �MCSCF� approximation to some extent.31 However,
MCSCG deals with grand-canonical nonequilibrium states
and considers an incoherent superposition �mixture� of dif-
ferent configurations. Obviously, coherent superpositions of
many-body states of varying particle numbers would be sub-
ject to strong dephasing due to the Coulomb interaction and
the resulting entanglement with the environment.

Table I visualizes our implementation of the MCSCG pro-

cedure. Compared to the standard Hartree self-consistency
procedure for the electron density �e and the Hartree poten-
tial VH, we thus have the generalizations �e→G� , �w�� and
VH→ ��ee��̂�	�. Note that the Poisson equation �2� is solved
inherently by considering the Coulomb Green’s function in
Eqs. �6�, �7�, and �13�.

In future implementations of the MCSCG approach, the
many-body calculation for w could be extended to include
off-diagonal terms of HMB and dissipation effects for relevant
states. From a numerical diagonalization of the projected
many-body problem based on HMB, it is also possible to cal-
culate higher-order correlation functions �within the relevant
subspace�. Note that the MCSCG can also be interpreted as a
means to construct an effective �̄ee for Eq. �9�.

VI. EXAMPLE: SB-FET

In the following illustrative example, we consider a one-
band nanowire FET with Schottky-barrier injectors, having

TABLE I. Implementation of the MCSCG algorithm.

1. Start implementation of function G�,
e.g., via the Hartree-Fock calculation

2. Function G� given

3. Calculate single-particle density matrix �̂�G�	
via numerical integration over E

4. Diagonalize �̂
and choose relevant single-particle states

5. Calculate matrices �̂� from �̂
for all configurations � of relevant states

6. Implement functions Gr��̂�	
by use of the Dyson equation

with Hartree-Fock �ee
r ��̂�	

for all relevant configurations �

7. Implement functions G���̂�	
by use of the Dyson equation with Gr��̂�	

for all relevant configurations �

8. Calculate configuration weight vector w
by use of the many-body

Hamiltonian HMB such that
��GMB

� �w	 ,G��=min
or �w��̂�= �̂ with max. entropy �T*�

within the relevant subspace

9. New implementation of functions
Gr=�w�Gr��̂�	

G�=�w�G���̂�	

10. Loop back to step 2 until convergence

11. Calculate single-particle quantities by
use of G� ,Gr

via numerical integration over E
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one localized orbital �with two spin directions� per site.
Therefore, only Coulomb matrix elements of the form Vijji
are remaining. Furthermore, we assume nearest-neighbor
hopping with a real hopping parameter t=2 / �2m*a2�. We
have used the following device parameters: The nominally
undoped channel has a diameter of dch=4 nm and a length
of L=20 nm �implemented as 20 sites with a spacing of
a=1 nm�. The channel with �ch=15 is surrounded by a gate
oxide with dox=10 nm and �ox=3.9, yielding ��3.7 nm. We
assume an effective electron mass of m*=0.05me �giving
t=0.77 eV�. The metallic source and drain contacts have a
Schottky-barrier height of �SB=0.5 eV. For simplicity, the
corresponding contact self-energy is assumed to be of the
form �c

r �−i� /2 �within the band at the outer ends of the
channel� with ��76 meV. Note that this parameter has to be
chosen to match the actual metal contact used in an experi-
ment. However, it is uncritical for the electronic spectrum
and single-electron charging effects. The system tempera-
ture is T=77 K. The Lagrange parameters for the entropy
maximization at a given temperature and individual �non-
equilibrium� occupation numbers within the MCSCG were
obtained with the help of a Newton iteration scheme. Up to
N=6 adaptively chosen relevant single-particle states were
taken into account, depending on the applied voltages �with
VS�0�.

Figure 2 visualizes the local density of states �LDOS� for
low drain-source bias conditions and two different gate volt-
ages VG=0.59 V and VG=0.71 V, where the average elec-
tron number in the channel becomes Ne�0 and Ne�1, re-
spectively. The existence of quasibound states �i.e., spatially
and energetically localized resonances in the spectral func-
tion A� yields discrete single-electron energies with associ-
ated interaction energies due to �ee

r . Comparing the situation
for Ne=1 with Ne=0, the single-electron resonances are
moved to higher energies with respect to the lowest-energy
state due to the Coulomb repulsion. Note that each electron
is not subject to its own Hartree potential �see the lowest
resonance in Fig. 2�b�� because �ee

r does not contain un-
physical self-interaction energies, but includes exchange
terms and correctly accounts for the electron spin. In the
shown example, the next higher available state for a second
electron �with opposite spin� is separated by the interaction
energy V1221�93 meV �see the arrow in Fig. 2�b��. In gen-
eral, energy levels are split by exchange energy terms, which
have a significant influence on the energy spectrum.

As a natural consequence of h+�ee
r we therefore expect to

observe the effect of a steplike electron filling �under condi-
tions close to equilibrium in particular�, energetically deter-
mined by single-electron levels and repulsion energies. This
behavior in fact can be seen in Fig. 3, where the electron-
filling characteristics is plotted for a varying gate voltage and
fixed drain-source bias VD=2 mV. Furthermore, Coulomb
oscillations in the accompanying current through the channel
can be identified. For example, the separation of the first two
conductance peaks on the gate voltage axis �VG�1→2�
�0.12 V is determined by the Coulomb interaction energy
V1221, scaled by the reciprocal efficiency of the gate at
changing the electrostatic potential in the channel. �Note that
the applied gate voltage not only shifts the potential but also
modifies the confinement slightly, and hence the quasibound

states and their interaction energies.� In turn, one could de-
fine an effective capacitance CG

* via �VG�1→2�=e /CG
* .

Models solely based on a self-consistent Hartree potential
do not provide quantization effects due to Coulomb repul-
sion. With a Hartree approach �as used with conventional
Schrödinger-Poisson solvers�, spectral features are solely
shifted in energy, depending on the average electron density.
In contrast, the MCSCG �as well as the exact diagonalization
of the isolated system� provides a superposition of fading
spectra of integer electron numbers with full interaction en-
ergies, however, having spectral weights that depend on the
average filling condition. The local density of states under

FIG. 2. Spectral function A�x ,E� as a gray scale plot for �a�
VG=0.59 V and �b� VG=0.71 V. In both cases, VD=2 mV is cho-
sen. The resulting average electron number within the channel is �a�
Ne�0 and �b� Ne�1 �the electron is located in the lowest reso-
nance�. The solid white line represents the mean-field potential
V�x�, whereas �S and �D denote the chemical potentials of the
source and drain contact, respectively. T=77 K.
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nonequilibrium conditions as shown in Fig. 4 clearly demon-
strates this behavior, where the average electron number
within the well is Ne�0.22. In fact, the expectation value of
the electron number need not be an integer, especially under
nonequilibrium bias conditions, which can be seen in the
corresponding transfer characteristics of the system as plot-
ted in Fig. 5. Furthermore, Fig. 6 visualizes the output IV
characteristics, where a finite drain voltage is required to pull
the chemical potential of the drain contact below the lowest-
energy level. The resulting saturation in the drain current
with increasing drain voltage is due to the single-mode trans-
port, limited by the source barrier, which is hardly influenced
by the drain contact �for the discussed channel length L���.

These results clearly demonstrate the strengths of the MC-
SCG approach: Compared to a conventional nonequilibrium
Green’s function approach with a mean-field interaction, the
MCSCG provides an advanced description of fluctuating
electron numbers �i.e., noninteger filling� of resonantly
trapped electrons and hence single-electron charging effects.
On the other hand, compared to a rate-equation approach, the
MCSCG not only contains a nonequilibrium many-body de-
scription of resonantly trapped electrons but also incorpo-
rates nonresonant states and their nonequilibrium charging in
a consistent manner.

In general, we expect the many-body Coulomb interaction
to have a significant impact on the electrical behavior of
nanotransistors if the single-electron charging energy be-
comes �4kT, having consequences for the transconductance,
onset/pinch-off voltages, subthreshold currents, and system
capacitance. A more detailed discussion of these aspects will
be published elsewhere.

VII. CONCLUSION

The Coulomb Green’s function of a one-dimensional FET
in combination with a quantum kinetic description of elec-

FIG. 3. Single-electron tunneling characteristics for VD=2 mV.
The solid line with filled squares corresponds to the average elec-
tron number within the potential well, whereas the dashed line with
open circles shows the drain current, exhibiting Coulomb oscilla-
tions. T=77 K.

FIG. 4. Nonequilibrium spectral function A�x ,E� as a gray scale
plot for VG=0.7 V and VD=0.2 V. The resulting average electron
number within the channel is Ne�0.22. �The solid white line rep-
resents the mean-field potential V�x�, whereas �S and �D denote the
chemical potentials of the source and drain contact, respectively.	
T=77 K.

FIG. 5. Transfer characteristics for VD=0.2 V. The solid line
with filled squares corresponds to the average electron number
within the potential well, whereas the dashed line with open circles
shows the drain current through the channel. T=77 K.

FIG. 6. Output characteristics for VG=0.59 V and VG=0.71 V.
T=77 K.
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tronic transport enables us to describe many-body charging
effects within the transistor channel for application-relevant
temperatures. We have presented a multiconfigurational self-
consistent Green’s function algorithm, which is able to cope
with fluctuating electron numbers under nonequilibrium con-
ditions. In the discussed example of a nano-FET with
Schottky-barrier injectors, we have visualized how single-
electron charging effects arise naturally as a consequence of
the many-body Coulomb repulsion between quasibound

states. The usage of a Green’s function formulation permits
the systematic extension to further Coulomb diagrams and
the consistent inclusion of phonon scattering.

With the presented theoretical approach, we are able to
describe electronic transport and quantum charging effects in
1D nanotransistors such as gated carbon nanotubes, semicon-
ductor whiskers, and 1D CMOS transistors �in coaxial and
multigate planar geometry�.
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