670 research outputs found

    Spontaneous symmetry breaking of a hyperbolic sigma model in three dimensions

    Full text link
    Non-linear sigma models that arise from the supersymmetric approach to disordered electron systems contain a non-compact bosonic sector. We study the model with target space H^2, the two-hyperboloid with isometry group SU(1,1), and prove that in three dimensions moments of the fields are finite in the thermodynamic limit. Thus the non-compact symmetry SU(1,1) is spontaneously broken. The bound on moments is compatible with the presence of extended states.Comment: 21 pages, dedicated to F.J. Dyson on the occasion of his 80th birthda

    Finite volume corrections to the electromagnetic current of the nucleon

    Full text link
    We compute corrections to both the isovector anomalous magnetic moment and the isovector electromagnetic current of the nucleon to O(p3)O(p^3) in the framework of covariant two-flavor Baryon Chiral Perturbation Theory. We then apply these corrections to lattice data for the anomalous magnetic moment from the LHPC, RBC & UKQCD and QCDSF collaborations

    Kondo flow invariants, twisted K-theory and Ramond-Ramond charges

    Full text link
    We take a worldsheet point of view on the relation between Ramond-Ramond charges, invariants of boundary renormalization group flows and K-theory. In compact super Wess-Zumino-Witten models, we show how to associate invariants of the generalized Kondo renormalization group flows to a given supersymmetric boundary state. The procedure involved is reminiscent of the way one can probe the Ramond-Ramond charge carried by a D-brane in conformal field theory, and the set of these invariants is isomorphic to the twisted K-theory of the Lie group. We construct various supersymmetric boundary states, and we compute the charges of the corresponding D-branes, disproving two conjectures on this subject. We find a complete agreement between our algebraic charges and the geometry of the D-branes.Comment: 58 pages. V4 : Problem with the bibliography correcte

    Effect of electromagnetic fields on the creation of scalar particles in a flat Robertson-Walker space-time

    Full text link
    The influence of electromagnetic fields on the creation of scalar particles from vacuum in a flat Robertson-Walker space-time is studied. The Klein Gordon equation with varying electric field and constant magnetic one is solved. The Bogoliubov transformation method is applied to calculate the pair creation probability and the number density of created particles. It is shown that the electric field amplifies the creation of scalar particles while the magnetic field minimizes it.Comment: Important modifications, 20 pages, To appear in Eurpean Physical Journal C. arXiv admin note: text overlap with arXiv:1108.033

    Color Transparency versus Quantum Coherence in Electroproduction of Vector Mesons off Nuclei

    Full text link
    So far no theoretical tool for the comprehensive description of exclusive electroproduction of vector mesons off nuclei at medium energies has been developed. We suggest a light-cone QCD formalism which is valid at any energy and incorporates formation effects (color transparency), the coherence length and the gluon shadowing. At medium energies color transparency (CT) and the onset of coherence length (CL) effects are not easily separated. Indeed, although nuclear transparency measured by the HERMES experiment rises with Q^2, it agrees with predictions of the vector dominance model (VDM) without any CT effects. Our new results and observations are: (i) the good agreement with the VDM found earlier is accidental and related to the specific correlation between Q^2 and CL for HERMES kinematics; (ii) CT effects are much larger than have been estimated earlier within the two channel approximation. They are even stronger at low than at high energies and can be easily identified by HERMES or at JLab; (iii) gluon shadowing which is important at high energies is calculated and included; (iv) our parameter-free calculations explain well available data for variation of nuclear transparency with virtuality and energy of the photon; (v) predictions for electroproduction of \rho and \phi are provided for future measurements at HERMES and JLab.Comment: Latex 57 pages and 17 figure

    Critical exponents and equation of state of the three-dimensional Heisenberg universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional Heisenberg universality class. We find gamma=1.3960(9), nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with suppressed leading scaling corrections. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods and high-temperature expansions. The critical exponents are computed from high-temperature expansions specialized to the phi^4 improved model. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine a number of universal amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.

    Chiral extrapolation of nucleon wave function normalization constants

    Full text link
    Within the framework of two-flavor covariant baryon chiral perturbation theory we have expressed the Chernyak-Zhitnitsky, Ioffe and Dosch currents in terms of chiral fields to provide leading one-loop extrapolation formulae for the leading and next-to-leading twist normalization constants fNf_N, λ1\lambda_1 and λ2\lambda_2. Finite volume effects due to pion loops have been taken into account. The occurring low energy constants are fitted to data obtained from recent lattice QCD simulations in order to extract the values at the physical point

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde
    • …
    corecore