8,030 research outputs found

    Meson Supercurrent State in High Density QCD

    Full text link
    We study the effect of a non-zero strange quark mass on the color-flavor-locked (CFL) phase of high density quark matter. We have previously shown that for a strange quark mass ms∼mu1/3Δ2/3m_s\sim m_u^{1/3}\Delta^{2/3} the CFL state becomes unstable toward the formation of a neutral kaon condensate. Recently, several authors discovered that for ms∼(2ΔpF)1/2m_s\sim (2\Delta p_F)^{1/2} the CFL state contains gapless fermions, and that the gapless modes lead to an instability in current-current correlation functions. Using an effective theory of the CFL state we demonstrate that this instability is resolved by the formation of an inhomogeneous meson condensate, analogous to Migdal's p-wave pion condensate. This state has a non-zero meson current which is canceled by a backflow of gapless fermions.Comment: 4 pages, one figure, revised version, to appear in PRL (title changed in journal

    Polarized fermions in the unitarity limit

    Full text link
    We consider a polarized Fermi gas in the unitarity limit. Results are calculated analytically up to next-to-leading order in an expansion about d=4 spatial dimensions. We find a first order transition from superfluid to normal phase. The critical chemical potential asymmetry for this phase transition is delta_mu_c= 2/(mu epsilon)*(1-0.467\epsilon), where epsilon=4-d is the expansion parameter and 'mu' is the average chemical potential of the two fermion species. Stability of the superfluid phase in the presence of supercurrents is also studied.Comment: 5 pages, 5 figures, LaTeX2e; minor changes, note added at the end, to be published in PR

    CENP-C unwraps the human CENP-A nucleosome through the H2A C-terminal tail

    No full text
    Centromeres are defined epigenetically by nucleosomes containing the histone H3 variant CENP-A, upon which the constitutive centromere-associated network of proteins (CCAN) is built. CENP-C is considered to be a central organizer of the CCAN. We provide new molecular insights into the structure of human CENP-A nucleosomes, in isolation and in complex with the CENP-C central region (CENP-C-CR), the main CENP-A binding module of human CENP-C. We establish that the short alpha N helix of CENP-A promotes DNA flexibility at the nucleosome ends, independently of the sequence it wraps. Furthermore, we show that, in vitro, two regions of human CENP-C (CENP-C-CR and CENP-C-motif) both bind exclusively to the CENP-A nucleosome. We find CENP-C-CR to bind with high affinity due to an extended hydrophobic area made up of CENP-A(V)(532) and CENP-A(V)(533). Importantly, we identify two key conformational changes within the CENP-A nucleosome upon CENP-C binding. First, the loose DNA wrapping of CENP-A nucleosomes is further exacerbated, through destabilization of the H2A C-terminal tail. Second, CENP-C-CR rigidifies the N-terminal tail of H4 in the conformation favoring H4(K20) monomethylation, essential for a functional centromere

    From Trapped Atoms to Liberated Quarks

    Get PDF
    We discuss some aspects of cold atomic gases in the unitarity limit that are of interest in connection with the physics of dense hadronic matter. We consider, in particular, the equation of state at zero temperature, the magnitude of the pairing gap, and the phase diagram at non-zero polarization.Comment: 13 pages, 5 figures; to appear in the proceedings of the International Symposium on Heavy Ion Physics 2006, Frankfurt, Germany; International Journal of Modern Physics E, in pres

    Fluoride in groundwater in the Bongo District, Ghana: An Assessment, health impact and possible mitigation strategies

    Get PDF

    Capacity of a bosonic memory channel with Gauss-Markov noise

    Full text link
    We address the classical capacity of a quantum bosonic memory channel with additive noise, subject to an input energy constraint. The memory is modeled by correlated noise emerging from a Gauss-Markov process. Under reasonable assumptions, we show that the optimal modulation results from a "quantum water-filling" solution above a certain input energy threshold, similar to the optimal modulation for parallel classical Gaussian channels. We also derive analytically the optimal multimode input state above this threshold, which enables us to compute the capacity of this memory channel in the limit of an infinite number of modes. The method can also be applied to a more general noise environment which is constructed by a stationary Gauss process. The extension of our results to the case of broadband bosonic channels with colored Gaussian noise should also be straightforward.Comment: 11 pages, 4 figures, final corrections mad

    Observation of inter-Landau-level quantum coherence in semiconductor quantum wells

    Full text link
    Using three-pulse four-wave-mixing femtosecond spectroscopy, we excite a non-radiative coherence between the discrete Landau levels of an undoped quantum well and study its dynamics. We observe quantum beats that reflect the time evolution of the coherence between the two lowest Landau level magnetoexcitons. We interpret our observations using a many-body theory and find that the inter Landau level coherence decays with a new time constant, substantially longer than the corresponding interband magnetoexciton dephasing times. Our results indicate a new intraband excitation dynamics that cannot be described in terms of uncorrelated interband excitations.Comment: 5 pages, 5 figures, to appear in Phys. Rev. B Rapid Communication

    Nonequilibrium mesoscopic conductance fluctuations

    Full text link
    We investigate the amplitude of mesoscopic fluctuations of the differential conductance of a metallic wire at arbitrary bias voltage V. For non-interacting electrons, the variance increases with V. The asymptotic large-V behavior is \sim V/V_c (where eV_c=D/L^2 is the Thouless energy), in agreement with the earlier prediction by Larkin and Khmelnitskii. We find, however, that this asymptotics has a very small numerical prefactor and sets in at very large V/V_c only, which strongly complicates its experimental observation. This high-voltage behavior is preceded by a crossover regime, V/V_c \lesssim 30, where the conductance variance increases by a factor \sim 3 as compared to its value in the regime of universal conductance fluctuations (i.e., at V->0). We further analyze the effect of dephasing due to the electron-electron scattering on at high voltages. With the Coulomb interaction taken into account, the amplitude of conductance fluctuations becomes a non-monotonic function of V. Specifically, drops as 1/V for voltages V >> gV_c, where g is the dimensionless conductance. In this regime, the conductance fluctuations are dominated by quantum-coherent regions of the wire adjacent to the reservoirs.Comment: 14 pages, 4 figures. Fig.2 and one more appendix added, accepted for publication in PR

    A Diagrammatic Approach to Crystalline Color Superconductivity

    Get PDF
    We present a derivation of the gap equation for the crystalline color superconducting phase of QCD which begins from a one-loop Schwinger-Dyson equation written using a Nambu-Gorkov propagator modified to describe the spatially varying condensate. Some aspects of previous variational calculations become more straightforward when rephrased beginning from a diagrammatic starting point. This derivation also provides a natural base from which to generalize the analysis to include quark masses, nontrivial crystal structures, gluon propagation at asymptotic densities, and nonzero temperature. In this paper, we analyze the effects of nonzero temperature on the crystalline color superconducting phase.Comment: 15 pages. 2 eps figure
    • …
    corecore