50 research outputs found
Granulocyte-Colony Stimulating Factor (G-CSF) Improves Motor Recovery in the Rat Impactor Model for Spinal Cord Injury
Granulocyte-colony stimulating factor (G-CSF) improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. Previously we have employed the mouse hemisection SCI model and studied motor function after subcutaneous or transgenic delivery of the protein. To further broaden confidence in animal efficacy data we sought to determine efficacy in a different model and a different species. Here we investigated the effects of G-CSF in Wistar rats using the New York University Impactor. In this model, corroborating our previous data, rats treated subcutaneously with G-CSF over 2 weeks show significant improvement of motor function
The Hominin Sites and Paleolakes Drilling Project:Inferring the environmental context of human evolution from eastern African rift lake deposits
Funding for the HSPDP has been provided by ICDP, NSF (grants EAR-1123942, BCS-1241859, and EAR-1338553), NERC (grant NE/K014560/1), DFG priority program SPP 1006, DFG-CRC-806 âOur way to Europeâ, the University of Cologne (Germany), the Hong Kong Research Grants Council (grant no. HKBU201912), the Peter Buck Fund for Human Origins Research (Smithsonian), the William H. Donner Foundation, the Ruth and Vernon Taylor Foundation, Whitney and Betty MacMillan, and the Smithsonianâs Human Origins Program.The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012â2014 HSPDP coring campaign.Publisher PDFPeer reviewe
Restoring brain function after stroke - bridging the gap between animals and humans
Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke
Validation of the AF-ESUS score to identify patients with embolic stroke of undetermined source and low risk of device-detected atrial fibrillation
[No abstract available
Exploring Cognitive Impairment in Patients With Bilateral Capsular Genu Lesions
OBJECTIVE: The authors investigated for presence of cognitive impairment after occurrence of bilateral lesions of the genu of the internal capsule (GIC). Clinical and neuropsychological features of unilateral GIC lesions have previously been studied, but the cognitive profile of bilateral lesions of the GIC has not been fully explored. METHODS: An investigation was conducted of neurocognitive deficits and computerized tomography MRI findings among 4,200 stroke patients with bilateral GIC involvement who were admitted to the hospital between January 2010 and October 2018. RESULTS: Eight patients with bilateral lesions of the capsular genu were identified and their data analyzed. Overall, behavioral and cognitive dysfunction were characterized by impairment of frontal, memory, and executive functions. Attention and abstraction were present among all eight patients (100%); apathy, abulia, and executive dysfunctions, among seven (87.5%); global mental dysfunction and planning deficits, among six (75.0%); short-term verbal memory deficits and language dysfunctions, among five (62.5%); long-term verbal memory deficits, among four (50.0%); and spatial memory deficits, reading, writing, counting dysfunctions, and anarthria, among two (25.0%). Four of the patients (50.0%) without a history of cognitive disorder showed severe mental deterioration compatible with the clinical picture of dementia. A clinical picture of dementia was still present in these patients 6 months after stroke. CONCLUSIONS: Bilateral lesions of the capsular genu appearing either simultaneously or at different times were significantly associated with executive dysfunctions