80 research outputs found

    Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.

    Get PDF
    Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis

    Mechanisms of eosinophil cytokine release

    Full text link
    Human eosinophils have been demonstrated to contain a multitude of cytokines and chemokines that exist pre-formed within these cells. This content of pre-formed cytokines, with diverse potential biologic activities, provides eosinophils with capabilities distinct from most other leukocytes. The localization of pre-formed cytokines within eosinophils is both within specific granules and associated with substantial numbers of morphologically distinct cytoplasmic vesicles. Stimulation for release of specific cytokines, such as IL-4, leads to a regulated signal transduction cascade, which is dependent on the formation of leukotriene C4 within eosinophils where it acts as an intracrine mediator. IL-4 release occurs selectively and is by means of vesicular transport. The capabilities of eosinophils not only to rapidly release pre-formed cytokines but also to differentially regulate which cytokines are released endow eosinophils with distinct abilities in innate and acquired immunity

    Focal exocytosis by eosinophils-compound exocytosis and cumulative fusion

    No full text
    We have investigated the granule fusion events during exocytosis in horse eosinophils by time-resolved patch-clamp capacitance measurements. Stimulation with intracellular GTP gamma S leads to a stepwise capacitance increase by 4.0 +/- 0.9 pF. At GTP gamma S concentrations < 20 microM the step size distribution is in agreement with the granule size distribution in resting cells. Above 80 microM the number of steps is reduced and very large steps occur. The total capacitance increase, however, is unaffected. These results show that at high GTP gamma S concentrations granule--granule fusion occurs inside the cell forming large compound granules, which then fuse with the plasma membrane (compound exocytosis). The electrical equivalent circuit of the cell during degranulation indicates the formation of a degranulation sac by cumulative fusion events. Fusion of the first granule with the plasma membrane induces fusion of further granules with this granule directing the release of all the granular material to the first fusion pore. The physiological function of eosinophils is the killing of parasites. Compound exocytosis and cumulative fusion enable the cells to focus the release of cytotoxic proteins to well defined target regions and prevent uncontrolled diffusion of this material, which would damage intact host cells

    Focal exocytosis by eosinophils--compound exocytosis and cumulative fusion.

    No full text
    We have investigated the granule fusion events during exocytosis in horse eosinophils by time-resolved patch-clamp capacitance measurements. Stimulation with intracellular GTP gamma S leads to a stepwise capacitance increase by 4.0 +/- 0.9 pF. At GTP gamma S concentrations < 20 microM the step size distribution is in agreement with the granule size distribution in resting cells. Above 80 microM the number of steps is reduced and very large steps occur. The total capacitance increase, however, is unaffected. These results show that at high GTP gamma S concentrations granule--granule fusion occurs inside the cell forming large compound granules, which then fuse with the plasma membrane (compound exocytosis). The electrical equivalent circuit of the cell during degranulation indicates the formation of a degranulation sac by cumulative fusion events. Fusion of the first granule with the plasma membrane induces fusion of further granules with this granule directing the release of all the granular material to the first fusion pore. The physiological function of eosinophils is the killing of parasites. Compound exocytosis and cumulative fusion enable the cells to focus the release of cytotoxic proteins to well defined target regions and prevent uncontrolled diffusion of this material, which would damage intact host cells

    Compound exocytosis and cumulative degranulation by eosinophils and their role in parasite killing

    No full text
    The killing of metazoan parasitic larvae by eosinophils occurs following cell adhesion and the secretion o f their cytotoxic proteins onto the surface o f these targets. In eosinophils, as in mast cells and neutrophils, stimulus-secretion coupling is mediated by GTP-binding proteins. In this article, Susanne Scepek Redwon Moqbel and Manfred Lindou summarize recent results indicating that the granule-fusion events activated by GTP-binding proteins lead to compound exocytosis and cumulative fusion. They propose that these exocytotic processes, following contact with opsonized larvae, may direct secretion to a restricted space defined by the site o f contact Such a focused release may be essential for effective targeting in parasite killing, thus preventing uncontrolled random diffusion of the secreted cytotoxic proteins with the possible undesirable consequences of damage to intact host tissue

    Exocytotic competence and intergranular fusion in cord blood-derived eosinophils during differentiation.

    No full text
    We studied degranulation of single cord blood-derived mononuclear cells differentiating to eosinophils in cultures containing recombinant human interleukin-5 (rhIL-5) and rhIL-3 by whole-cell patch-clamp capacitance measurements. As in mature cells, degranulation can be stimulated by intracellular application of guanosine-5'-O-(3-thiotriphosphate) (GTP) gamma S after 10 days in culture, simultaneously with the first morphological appearance of granules. These results demonstrate that the fusion machineries for exocytotic fusion are present and functional as soon as the granules are formed, presumably at the myeloblast stage. In the third week, the total amount of granules exocytosed upon stimulation is similar to that in mature eosinophils from peripheral blood. The capacitance step size distributions in promyelocytes and myelocytes confirm that mature large specific granules are formed by homotypic fusion of unit granules with similar size. Homotypic fusion is facilitated during early stages of differentiation associated with granulogenesis. Between day 10 and day 35 in culture the plasma membrane area of resting cells decreases from approximately 700 microns2 to approximately 400 microns2, approaching the value of mature cells from peripheral blood. The most prominent decrease occurs between day 25 and day 35 and is accompanied by the appearance of an exocytotic component due to small vesicles. This suggests that a class of small secretory vesicles is formed by endocytosis during a late phase in maturation

    Regulation of granule size in human and horse eosinophils by number of fusion events among unit granules.

    No full text
    1. We have investigated the granule size distributions in human and horse eosinophils by time-resolved patch-clamp capacitance measurements. 2. During exocytosis of single granules the electrical capacitance of the plasma membrane increases in discrete steps. The steps in horse cells are about six times larger than those in human cells in accordance with the difference in granule size. 3. In both species a multimodal capacitance step size distribution is observed with a first peak at 6-7 fF corresponding to granules with a diameter of about 450-500 nm and a surface area of about 0.7 microns2, which we call the unit granule. The other peaks in the distributions correspond to multiples of the surface area of these units. 4. These results show that the larger granules are formed by fusion of several unit granules and the final size of mature granules is determined by the number of units allowed to fuse with each other. Whereas in human eosinophils most granules consist of one or two units, most granules of horse eosinophils are formed by fusion of seven to fifteen units. 5. The intracellular fusion events associated with vesicular traffic are believed to occur constitutively. In contrast, our results indicate that a cellular mechanism exists which regulates the size of the mature granules by determining the number of units allowed to fuse with each other. In view of our recent report that granule-granule fusion can be activated by GTP gamma S, this regulation may possibly involve GTP-binding proteins
    • …
    corecore