40 research outputs found

    High Burden of Non-Influenza Viruses in Influenza-Like Illness in the Early Weeks of H1N1v Epidemic in France

    Get PDF
    BACKGROUND: Influenza-like illness (ILI) may be caused by a variety of pathogens. Clinical observations are of little help to recognise myxovirus infection and implement appropriate prevention measures. The limited use of molecular tools underestimates the role of other common pathogens. OBJECTIVES: During the early weeks of the 2009-2010 flu pandemic, a clinical and virological survey was conducted in adult and paediatric patients with ILI referred to two French University hospitals in Paris and Tours. Aims were to investigate the different pathogens involved in ILI and describe the associated symptoms. METHODS: H1N1v pandemic influenza diagnosis was performed with real time RT-PCR assay. Other viral aetiologies were investigated by the molecular multiplex assay RespiFinder19®. Clinical data were collected prospectively by physicians using a standard questionnaire. RESULTS: From week 35 to 44, endonasal swabs were collected in 413 patients. Overall, 68 samples (16.5%) were positive for H1N1v. In 13 of them, other respiratory pathogens were also detected. Among H1N1v negative samples, 213 (61.9%) were positive for various respiratory agents, 190 in single infections and 23 in mixed infections. The most prevalent viruses in H1N1v negative single infections were rhinovirus (62.6%), followed by parainfluenza viruses (24.2%) and adenovirus (5.3%). 70.6% of H1N1v cases were identified in patients under 40 years and none after 65 years. There was no difference between clinical symptoms observed in patients infected with H1N1v or with other pathogens. CONCLUSION: Our results highlight the high frequency of non-influenza viruses involved in ILI during the pre-epidemic period of a flu alert and the lack of specific clinical signs associated with influenza infections. Rapid diagnostic screening of a large panel of respiratory pathogens may be critical to define and survey the epidemic situation and to provide critical information for patient management

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    Get PDF
    Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old

    Cryptococcal meningitis: epidemiology, immunology, diagnosis and therapy.

    Get PDF
    HIV-associated cryptococcal meningitis is by far the most common cause of adult meningitis in many areas of the world that have high HIV seroprevalence. In most areas in Sub-Saharan Africa, the incidence of cryptococcal meningitis is not decreasing despite availability of antiretroviral therapy, because of issues of adherence and retention in HIV care. In addition, cryptococcal meningitis in HIV-seronegative individuals is a substantial problem: the risk of cryptococcal infection is increased in transplant recipients and other individuals with defects in cell-mediated immunity, and cryptococcosis is also reported in the apparently immunocompetent. Despite therapy, mortality rates in these groups are high. Over the past 5 years, advances have been made in rapid point-of-care diagnosis and early detection of cryptococcal antigen in the blood. These advances have enabled development of screening and pre-emptive treatment strategies aimed at preventing the development of clinical infection in patients with late-stage HIV infection. Progress in optimizing antifungal combinations has been aided by evaluation of the clearance rate of infection by using serial quantitative cultures of cerebrospinal fluid (CSF). Measurement and management of raised CSF pressure, a common complication, is a vital component of care. In addition, we now better understand protective immune responses in HIV-associated cases, immunogenetic predisposition to infection, and the role of immune-mediated pathology in patients with non-HIV associated infection and in the context of HIV-associated immune reconstitution reactions

    Asymptomatic bacteriuria and urinary tract infections in kidney transplant recipients.

    No full text
    Urinary tract infection (UTI) is the most common infection in kidney transplant recipients (KTRs). Several elements increase the risk of UTI and/or modify its clinical presentation among KTRs (e.g. immunosuppressive therapy, kidney allograft denervation, and use of urinary catheters). Also, KTRs may have UTIs because of difficult-to-identify and/or difficult-to-treat organisms. We provide an overview of the current knowledge regarding bacterial UTIs in KTRs, with a focus on recent findings. There is accumulating evidence from clinical trials that screening for and treating asymptomatic bacteriuria is not beneficial in most KTRs (i.e. those who are ≥1-2 months posttransplant and do not have a urinary catheter). These patients have a point-prevalence of asymptomatic bacteriuria of only 3% and treating asymptomatic bacteriuria probably does not improve their outcomes. There is no clinical trial evidence to guide the management of symptomatic UTI in KTRs. Several important clinical questions remain unanswered, especially regarding the management of posttransplant pyelonephritis and the prevention of UTI in KTRs. Despite its frequency and associated morbidity, UTI after kidney transplantation is an understudied infection. In an era of increasing antimicrobial resistance and limited resources, further research is needed to ensure optimal use of antimicrobials in KTRs with UTI

    Multidrug-resistant Enterobacterales infections in abdominal solid organ transplantation

    No full text
    Background: Transplant recipients are highly susceptible to multidrug-resistant (MDR) related infections. The lack of early appropriate antimicrobial treatment may contribute to the high mortality due to MDR-related infections in transplant recipients especially in case of metallo-β-lactamases. Objectives: In this review, we present the current state of knowledge concerning multidrug-resistant Gram negative bacilli's risk management in the care of solid-organ transplant recipients and suggest control strategies. Sources: We searched for studies treating MDR g-negative bacilli related infections in the renal and hepatic transplant patient population. We included randomized and observational studies. Content: Solid-organ transplant is the best therapeutic option for patients diagnosed with end-stage organ disease. While the incidence of opportunistic infections is decreasing due to better prevention, the burden of “classical” infections related to MDR bacteria especially related to Gram-negative bacteria is constantly increasing. Over the last two decades, various MDR pathogens have emerged as a relevant cause of infection in this specific population associated with significant mortality. Several factors related to the management of transplant donor candidates and recipients increase the risk of MDR infections in transplant recipients. The awareness of this high susceptibility of transplant recipients to MDR-related infections challenges the choice of empirical therapy, while its appropriateness can only be validated a posteriori. Indeed, the lack of early appropriate antimicrobial treatment may contribute to the high mortality due to MDR-related infections in transplant recipients especially in case of metallo-β-lactamases. Implications: Multidrug-resistant Gram-negative bacteria are associated with high morbidity and mortality in solid organ transplant recipients. It seems important to identify patients at risk of colonization/MDR bacteria to evaluate strategies to limit the risk of secondary infections and to minimize the inappropriate use of broad-spectrum antibiotics
    corecore