17 research outputs found

    Nanofluids Application as Nanolubricants in Heat Pumps Systems

    Get PDF
    In the last years, various applications have been proposed for nanofluids in the Heating, Ventilation, Air Conditioning and Refrigeration (HVACR) field; their use as primary and secondary fluids, also as lubricants, was kept into account to improve the systems performance. The present work was developed to test the applicability of nanofluids as lubricants in the compressors of the heat pump systems, with the purpose to experimentally detect the possible positive effects of nanolubricants. Several nanolubricants, formed by Polyolester (POE) or mineral oil, as base fluid, and titanium oxide (TiO2) or single wall carbon nano-horns (SWCNH), as nanoparticles, were studied in a dedicated test rig. In contrast with the published literature, no improvement was detected using nanofluids instead of commercial oil. All results will be deeply discussed in the paper

    Shelf Life and Safety of Vacuum Packed HPP-Treated Soaked Cod Fillets: Effects of Salt Content and Multilayer Plastic Film

    No full text
    High microbiological quality standards, food safety, and environmental sustainability represent crucial topics in food production chains. For this reason, fish industries, which import salted and seasoned fish products from supplier countries, i.e., Norway, Denmark, USA (Alaska State), etc., have tried to reduce the salt content of each carton during transportation (reducing carbon emissions and the weight of major quantities of transported fish). In the present study, 360 differently processed fish fillet samples, belonging to the species Gadus macrocephalus caught in FAO zone 67, were microbiologically and chemically screened. This study aimed to provide original data concerning the applicability of sustainable solutions investigating the combined effects of salt content reduction combined with new recyclable multilayer plastic film packaging (vacuum skin packaging with two different oxygen transmission rate values). The microbiological results showed no substantial changes comparing the two differently salted products, highlighting their high hygienic characteristics which were also observed in their chemical analysis. The shelf life evolutions (comparing the two different studied plastic films) highlighted that, after 35 days from HPP treatments, bacterial loads gained high values, over 6 log cfu/g. This study highlights that, compared to the currently used plastic films, the results of the new and sustainable multilayer plastic films show that they can provide safe food matrices in combination with HPP technologies. Therefore, this preliminary investigation brings closer attention to alternative and environmentally sustainable production systems with their designs based on the multidisciplinary approach of food production systems

    R1234yf as a substitute of R134a in automotive air conditioning. Solubility measurements in two commercial PAG oils

    No full text
    Starting from January 1st 2011, as stated by the Directive 2006/40/EC, fluorinated greenhouse gases with a global warming potential (GWP) higher than 150 can not be used in automotive applications any more. For this reason, 1,1,1,2-tetrafluoroethane (R134a), commonly used for these applications, will be abandoned and substituted by refrigerants with lower GWP. In recent times, a new fluid, 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) has been proposed as an interesting alternative, since it has a very low GWP and thermodynamic properties very similar to R134a. At the moment, only few data can be found on the thermodynamic properties of this new refrigerant and, in particular, its behaviour in solution with commonly used compressor lubricants is still to be evaluated. Here, solubility experimental data of R1234yf in a Polyalkylene Glycol (PAG) and in a specifically modified Double-Capped PAG (DC-PAG) commercial lubricants are measured with a static synthetic method at isothermal conditions, in the temperature range between 258 K and 338 K. Article Outlin

    Shelf Life and Safety of Vacuum Packed HPP-Treated Soaked Cod Fillets: Effects of Salt Content and Multilayer Plastic Film

    No full text
    High microbiological quality standards, food safety, and environmental sustainability represent crucial topics in food production chains. For this reason, fish industries, which import salted and seasoned fish products from supplier countries, i.e., Norway, Denmark, USA (Alaska State), etc., have tried to reduce the salt content of each carton during transportation (reducing carbon emissions and the weight of major quantities of transported fish). In the present study, 360 differently processed fish fillet samples, belonging to the species Gadus macrocephalus caught in FAO zone 67, were microbiologically and chemically screened. This study aimed to provide original data concerning the applicability of sustainable solutions investigating the combined effects of salt content reduction combined with new recyclable multilayer plastic film packaging (vacuum skin packaging with two different oxygen transmission rate values). The microbiological results showed no substantial changes comparing the two differently salted products, highlighting their high hygienic characteristics which were also observed in their chemical analysis. The shelf life evolutions (comparing the two different studied plastic films) highlighted that, after 35 days from HPP treatments, bacterial loads gained high values, over 6 log cfu/g. This study highlights that, compared to the currently used plastic films, the results of the new and sustainable multilayer plastic films show that they can provide safe food matrices in combination with HPP technologies. Therefore, this preliminary investigation brings closer attention to alternative and environmentally sustainable production systems with their designs based on the multidisciplinary approach of food production systems
    corecore