30 research outputs found

    The use of FLAC for the seismic evaluation of a concrete gravity dam including dam-water-sediments-foundation rock interaction

    Get PDF
    Seismic safety of 65m-high Licodia Eubea gravity dam located in Southeastern Sicily (Italy) has been assessed by means of advanced dynamic analyses of the tallest cross-section of the dam. The analyses were performed with two-dimensional, plane strain, finite difference FLAC code, taking into consideration simultaneously the dam-water-sediments-foundation interaction. The analyses have been carried out for an earthquake scenario corresponding to the Collapse Limit State (CLS), using a set of seven natural accelerograms for the simulations (both vertical and horizontal components). The physical and mechanical parameters of the concrete and foundation rock were obtained from in situ and laboratory tests campaigns. A validation of the dynamic model in terms of fundamental mode vibration periods of the dam was carried out first. Then, linear analyses allowed to understand whether nonlinear analyses were necessary. From nonlinear analyses results, Licodia Eubea dam has been found to have an acceptable margin of safety for CLS. The implementation of nonlinearity at the dam-foundation interface reduced the tensile stress within the structure. The dam might experience limited sliding along its base, but its structural integrity would be preserved

    Engineering Reconnaissance Following the October 2016 Central Italy Earthquakes - Version 2

    Get PDF
    Between August and November 2016, three major earthquake events occurred in Central Italy. The first event, with M6.1, took place on 24 August 2016, the second (M5.9) on 26 October, and the third (M6.5) on 30 October 2016. Each event was followed by numerous aftershocks. As shown in Figure 1.1, this earthquake sequence occurred in a gap between two earlier damaging events, the 1997 M6.1 Umbria-Marche earthquake to the north-west and the 2009 M6.1 L’Aquila earthquake to the south-east. This gap had been previously recognized as a zone of elevated risk (GdL INGV sul terremoto di Amatrice, 2016). These events occurred along the spine of the Apennine Mountain range on normal faults and had rake angles ranging from -80 to -100 deg, which corresponds to normal faulting. Each of these events produced substantial damage to local towns and villages. The 24 August event caused massive damages to the following villages: Arquata del Tronto, Accumoli, Amatrice, and Pescara del Tronto. In total, there were 299 fatalities (www.ilgiornale.it), generally from collapses of unreinforced masonry dwellings. The October events caused significant new damage in the villages of Visso, Ussita, and Norcia, although they did not produce fatalities, since the area had largely been evacuated. The NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) association, with co-funding from the B. John Garrick Institute for the Risk Sciences at UCLA and the NSF I/UCRC Center for Unmanned Aircraft Systems (C-UAS) at BYU, mobilized a US-based team to the area in two main phases: (1) following the 24 August event, from early September to early October 2016, and (2) following the October events, between the end of November and the beginning of December 2016. The US team worked in close collaboration with Italian researchers organized under the auspices of the Italian Geotechnical Society, the Italian Center for Seismic Microzonation and its Applications, the Consortium ReLUIS, Centre of Competence of Department of Civil Protection and the DIsaster RECovery Team of Politecnico di Torino. The objective of the Italy-US GEER team was to collect and document perishable data that is essential to advance knowledge of earthquake effects, which ultimately leads to improved procedures for characterization and mitigation of seismic risk. The Italy-US GEER team was multi-disciplinary, with expertise in geology, seismology, geomatics, geotechnical engineering, and structural engineering. The composition of the team was largely the same for the two mobilizations, particularly on the Italian side. Our approach was to combine traditional reconnaissance activities of on-ground recording and mapping of field conditions, with advanced imaging and damage detection routines enabled by state-of-the-art geomatics technology. GEER coordinated its reconnaissance activities with those of the Earthquake Engineering Research Institute (EERI), although the EERI mobilization to the October events was delayed and remains pending as of this writing (April 2017). For the August event reconnaissance, EERI focused on emergency response and recovery, in combination with documenting the effectiveness of public policies related to seismic retrofit. As such, GEER had responsibility for documenting structural damage patterns in addition to geotechnical effects. This report is focused on the reconnaissance activities performed following the October 2016 events. More information about the GEER reconnaissance activities and main findings following the 24 August 2016 event, can be found in GEER (2016). The objective of this document is to provide a summary of our findings, with an emphasis of documentation of data. In general, we do not seek to interpret data, but rather to present it as thoroughly as practical. Moreover, we minimize the presentation of background information already given in GEER (2016), so that the focus is on the effects of the October events. As such, this report and GEER (2016) are inseparable companion documents. Similar to reconnaissance activities following the 24 August 2016 event, the GEER team investigated earthquake effects on slopes, villages, and major infrastructure. Figure 1.2 shows the most strongly affected region and locations described subsequently pertaining to: 1. Surface fault rupture; 2. Recorded ground motions; 3. Landslides and rockfalls; 4. Mud volcanoes; 5. Investigated bridge structures; 6. Villages and hamlets for which mapping of building performance was performed

    Reconnaissance of 2016 Central Italy Earthquake Sequence

    Get PDF
    The Central Italy earthquake sequence nominally began on 24 August 2016 with a M6.1 event on a normal fault that produced devastating effects in the town of Amatrice and several nearby villages and hamlets. A major international response was undertaken to record the effects of this disaster, including surface faulting, ground motions, landslides, and damage patterns to structures. This work targeted the development of high-value case histories useful to future research. Subsequent events in October 2016 exacerbated the damage in previously affected areas and caused damage to new areas in the north, particularly the relatively large town of Norcia. Additional reconnaissance after a M6.5 event on 30 October 2016 documented and mapped several large landslide features and increased damage states for structures in villages and hamlets throughout the region. This paper provides an overview of the reconnaissance activities undertaken to document and map these and other effects, and highlights valuable lessons learned regarding faulting and ground motions, engineering effects, and emergency response to this disaster

    Effects of ground motion characteristics on seismic response of earth dams. Some remarks on duration parameters and vertical shaking

    No full text
    Acceleration records used as input motion for nonlinear dynamic analyses of earth dams can significantly affect the outcome of the analyses. The selection of an adequate set of records is therefore an essential step of the study. Customary approaches rely on matching the target spectrum and the average response spectrum of the selected records. Furthermore, vertical motion is often considered to have a modest influence on dam response. In this paper, FLAC was used to conduct dynamic analyses of an earth dam located in Central Italy. The response was assessed in terms of permanent crest settlements and correlation were attempted with several IMs. The analyses were conducted with and without vertical component of motions. It was found that Arias Intensity may be considered an additional parameter to guide selection of input motions. The inclusion of the vertical components lead to a general increase, on average 75%, of the crest settlement

    Site characterization of Italian strong motion recording stations

    No full text
    A dataset of site conditions at 101 Italian ground motion stations with recorded motions has been compiled that includes geologic characteristics and seismic velocities. Geologic characterization is derived principally from local geologic investigations by ENEL that include detailed mapping and cross sections. For sites lacking such detailed geologic characterization, the geology maps of the by Servizio Geologico d'Italia are used. Seismic velocities are extracted from the literature and the files of consulting engineers, geologists and public agencies for 33 sites. Data sources utilized include post earthquake site investigations (Friuli and Irpinia events), microzonation studies, and miscellaneous investigations performed by researchers or consulting engineers/geologists. Additional seismic velocities are measured by the authors using the controlled source spectral analysis of surface waves (SASW) method for 18 sites that recorded the 1997-1998 Umbria Marche earthquake sequence. The compiled velocity measurements provide data for 51 of the 101 sites. For the remaining sites, the average seismic velocity in the upper 30 m (Vs30) is estimated using a hybrid approach. For young Quaternary alluvium, Vs30 an existing empirical relationship for California sites by Wills and Clahan (2006) is used, which we justify by validating this relationship against Italian data. For Tertiary Limestone and Italian Mesozoic rocks, empirical estimates of Vs30 are developed using the available data. This work is also presented in Scasserra et al

    The recording stations of the Italian strong motion network: Geological information and site classification

    No full text
    One of the main objectives of the ITACA (ITalian ACcelerometric Archive) strong motion database, promoted by the Italian Department of Civil Protection, was to improve the characterization of the recording sites from a geological and geophysical point of view and to provide their seismic classification according to the seismic norms pertinent to Italy, namely the Eurocode 8 and the National Technical Norms for Constructions. A standard format to summarize the available information for the recording stations was first produced, in terms of a technical report dynamically linked to the database, i. e., some of the relevant information is automatically updated when the corresponding fields of the database are modified. Then, an important activity of collection, qualification and synthesis of available data was carried out, especially for stations that recorded the strongest earthquakes in Italy in the last 40 years, and for which a relevant number of studies have been published. In spite of this activity, among the more than 700 strong motion stations present in the ITACA database, only a limited number of them could be characterized by quantitative information on subsurface soil properties. For this reason, a dual seismic site classification criterion was implemented, either based on the standard Vs,30 scheme, or, in the absence of such information, based on an expert opinion supported by shallow geology maps, mostly at 1:100,000 scale, and when available on the H/V ratios calculated on recordings. Owing to the relevance in the Italian geographic and morphological context, a special care was also given to the topographic classification of stations, based on suitable criteria developed within a GIS environment. © 2011 Springer Science+Business Media B.V

    Database for Earthquake Strong Motion Studies in Italy

    No full text
    We describe an Italian database of strong ground motion recordings and databanks delineating conditions at the instrument sites and characteristics of the seismic sources. The strong motion database consists of 247 corrected recordings from 89 earthquakes and 101 recording stations. Uncorrected recordings were drawn from public web sites and processed on a record-by-record basis using a procedure utilized in the Next-Generation Attenuation (NGA) project to remove instrument resonances, minimize noise effects through low- and high-pass filtering, and baseline correction. The number of available uncorrected recordings was reduced by 52% (mostly because of s-triggers) to arrive at the 247 recordings in the database. The site databank includes for every recording site the surface geology, a measurement or estimate of average shear wave velocity in the upper 30 m (Vs30), and information on instrument housing. Of the 89 sites, 39 have on-site velocity measurements (17 of which were performed as part of this study using SASW techniques). For remaining sites, we estimate Vs30 based on measurements on similar geologic conditions where available. Where no local velocity measurements are available, correlations with surface geology are used. Source parameters are drawn from databanks maintained (and recently updated) by Istituto Nazionale di Geofisica e Vulcanologia and include hypocenter location and magnitude for small events (M 5.5) and finite source parameters for larger events
    corecore