349 research outputs found

    THE EFFECT OF STRENGTH TRAINING ON THE KINEMATICS OF THE GOLF SWING

    Get PDF
    Despite the wide acceptance of resistance training in other sports, use of such programs in golf is a relatively new concept; consequently there is a lack of research addressing the effects of these programs on golfing performance. The few studies addressing this issue have used golf-specific programs (Lephart et al, 2007) these can require specialist equipment and can be more difficult to follow. Outcome measures in these studies have shown that strength training improves performance measures i.e. distance the ball is carried yet neglected details of the coordination of the golfer themselves (Fletcher and Hartwell, 2004). The aim of this study was to identify how a simple combined general resistance and plyometric program effects golf swing kinematics

    A Comparison of Reach-to-Grasp and Transport-to-Place Performance in Participants With Age-Related Macular Degeneration and Glaucoma

    Get PDF
    PURPOSE: To compare visually guided manual prehension in participants with primarily central field loss (CFL) due to age-related macular degeneration and peripheral visual field loss (PFL) due to glaucoma. This study extends current literature by comparing directly "reach-to-grasp" performance, and presents a new task of "transport-to-place" the object accurately to a new location. Data were compared to age-matched controls. METHODS: Three-dimensional motion data were collected from 17 glaucoma participants with PFL, 17 participants with age-related macular degeneration CFL and 10 age-matched control participants. Participants reached toward and grasped a cylindrical object (reach-to-grasp), and then transported and placed (transport-to-place) it at a different (predefined) peripheral location. Various kinematic indices were measured. Correlation analyses explored relationships between visual function and kinematic data. RESULTS: In the reach-to-grasp phase, CFL patients exhibited significantly longer movement and reaction times when compared to PFL participants and controls. Central field loss participants also took longer to complete the movement and made more online movements in the latter part of the reach. During the transport-to-place phase, CFL participants showed increased deceleration times, longer movement trajectory, and increased vertical wrist displacement. Central field loss also showed higher errors in placing the object at a predefined location. A number of kinematic indices correlated significantly to central visual function indices (P < 0.05). CONCLUSIONS: Significant differences in performance exist between CFL and PFL participants. Various indices correlated significantly with loss in acuity and contrast sensitivity (CS), suggesting that performance is more dependent on central visual function irrespective of underlying pathology

    ATF2 spot size tuning using the rotation matrix

    Get PDF
    The Accelerator Test Facility (ATF2) at KEK aims to experimentally verify the local chromaticity correction scheme to achieve a vertical beam size of 37nm. The facility is a scaled down version of the final focus design proposed for the future linear colliders. In order to achieve this goal, high precision tuning methods are being developed. One of the methods proposed for ATF2 is a novel method known as the ‘rotation matrix’ method. Details of the development and testing of this method, including orthogonality optimisation and simulation methods, are presented

    Planetary systems around close binary stars: the case of the very dusty, Sun-like, spectroscopic binary BD+20 307

    Get PDF
    Field star BD+20 307 is the dustiest known main sequence star, based on the fraction of its bolometric luminosity, 4%, that is emitted at infrared wavelengths. The particles that carry this large IR luminosity are unusually warm, comparable to the temperature of the zodiacal dust in the solar system, and their existence is likely to be a consequence of a fairly recent collision of large objects such as planets or planetary embryos. Thus, the age of BD+20 307 is potentially of interest in constraining the era of terrestrial planet formation. The present project was initiated with an attempt to derive this age using the Chandra X-ray Observatory to measure the X-ray flux of BD+20 307 in conjunction with extensive photometric and spectroscopic monitoring observations from Fairborn Observatory. However, the recent realization that BD+20 307 is a short period, double-line, spectroscopic binary whose components have very different lithium abundances, vitiates standard methods of age determination. We find the system to be metal-poor; this, combined with its measured lithium abundances, indicates that BD+20 307 may be several to many Gyr old. BD+20 307 affords astronomy a rare peek into a mature planetary system in orbit around a close binary star (because such systems are not amenable to study by the precision radial velocity technique).Comment: accepted for ApJ, December 10, 200

    Size and shape constancy in consumer virtual reality

    Get PDF
    With the increase in popularity of consumer virtual reality headsets, for research and other applications, it is important to understand the accuracy of 3D perception in VR. We investigated the perceptual accuracy of near-field virtual distances using a size and shape constancy task, in two commercially available devices. Participants wore either the HTC Vive or the Oculus Rift and adjusted the size of a virtual stimulus to match the geometric qualities (size and depth) of a physical stimulus they were able to refer to haptically. The judgments participants made allowed for an indirect measure of their perception of the egocentric, virtual distance to the stimuli. The data show under-constancy and are consistent with research from carefully calibrated psychophysical techniques. There was no difference in the degree of constancy found in the two headsets. We conclude that consumer virtual reality headsets provide a sufficiently high degree of accuracy in distance perception, to allow them to be used confidently in future experimental vision science, and other research applications in psychology

    4D Emittance Measurements Using Multiple Wire and Waist Scan Methods in the ATF Extraction Line.

    No full text
    TUPC087International audienceEmittance measurements performed in the diagnostic section of the ATF extraction line since 1998 lead to ver- tical emittances three times larger than the expected ones, with a strong dependence on intensity. An experimental program is pursued to investigate potential sources of emit- tance growth and find possible remedies. This requires ef- ficient and reliable emittance measurement techniques. In the past, several phase-space reconstruction methods devel- oped at SLAC and KEK have been used to estimate the ver- tical emittance, based on multiple location beam size mea- surements and dedicated quadrupole scans. These methods have been shown to be very sensitive to measurement er- rors and other fluctuations in the beam conditions. In this context new emittance measurements have been performed revisiting these methods and newly developed ones with a systematic approach to compare and characterise their per- formance in the ATF extraction line

    Astrometric orbits of SB9 stars

    Full text link
    Hipparcos Intermediate Astrometric Data (IAD) have been used to derive astrometric orbital elements for spectroscopic binaries from the newly released Ninth Catalogue of Spectroscopic Binary Orbits (SB9). Among the 1374 binaries from SB9 which have an HIP entry, 282 have detectable orbital astrometric motion (at the 5% significance level). Among those, only 70 have astrometric orbital elements that are reliably determined (according to specific statistical tests discussed in the paper), and for the first time for 20 systems, representing a 10% increase relative to the 235 DMSA/O systems already present in the Hipparcos Double and Multiple Systems Annex. The detection of the astrometric orbital motion when the Hipparcos IAD are supplemented by the spectroscopic orbital elements is close to 100% for binaries with only one visible component, provided that the period is in the 50 - 1000 d range and the parallax is larger than 5 mas. This result is an interesting testbed to guide the choice of algorithms and statistical tests to be used in the search for astrometric binaries during the forthcoming ESA Gaia mission. Finally, orbital inclinations provided by the present analysis have been used to derive several astrophysical quantities. For instance, 29 among the 70 systems with reliable astrometric orbital elements involve main sequence stars for which the companion mass could be derived. Some interesting conclusions may be drawn from this new set of stellar masses, like the enigmatic nature of the companion to the Hyades F dwarf HIP 20935. This system has a mass ratio of 0.98 but the companion remains elusive.Comment: Astronomy & Astrophysics, in press (16 pages, 12 figures); also available at http://www.astro.ulb.ac.be/Html/ps.html#Astrometr

    The effect of wave conditions and surfer ability on performance and the physiological response of recreational surfers.

    Get PDF
    This study investigated the effects of wave conditions on performance and the physiological responses of surfers. After institutional ethical approval 39 recreational surfers participated in 60 surfing sessions where performance and physiological response were measured using global positioning system (GPS) heart rate monitors. Using GPS, the percentage time spent in surfing activity categories was on average 41.6, 47.0, 8.1, and 3.1% for waiting, paddling, riding, and miscellaneous activities, respectively. Ability level of the surfers, wave size, and wave period are significantly associated with the physiological, ride, and performance parameters during surfing. As the ability level of the surfers increases there is a reduction in the relative exercise intensity (e.g., average heart rate as a percentage of laboratory maximum, rpartial = -0.412, p < 0.01) which is in contrast to increases in performance parameters (e.g., maximum ride speed (0.454, p < 0.01). As the wave size increased there were reductions in physiological demand (e.g., total energy expenditure rpartial = -0.351, p ≤ 0.05) but increases in ride speed and distance measures (e.g., the maximum ride speed, 0.454, p < 0.01). As the wave period increased there were increases in intensity (e.g., average heart rate as a percentage of laboratory maximum, rp = 0.490, p < 0.01) and increases in ride speed and distance measures (e.g., the maximum ride speed, rpartial = 0.371, p < 0.01). This original study is the first to show that wave parameters and surfer ability are significantly associated with the physiological response and performance characteristics of surfing

    Plans and progress towards tuning the ATF2 final focus system to obtain a 35 nm IP waist

    No full text
    FR5PFP021International audienceUsing a new extraction line currently being commissioned, the ATF2 experiment plans to test a novel compact final focus optics design using a local chromaticity correction scheme, such as could be used in future linear colliders*. Using a 1.3 GeV beam of ∼30nm normalised vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical IP waist of 35nm. We discuss our planned strategy, implementation details and early experimental results for tuning the ATF2 beam to meet the primary goal. These optics require uniquely tight tolerances on some magnet strengths and positions, we discuss efforts to re-match the optics to meet these requirements using high-precision measurements of key magnet elements. We simulated in detail the tuning procedure using several algorithms and different code implementations for comparison from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within 10% of the design optics value in at least 90% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks
    corecore