162 research outputs found

    The ability of magnetic field sensors to monitor feeding in three domestic herbivores

    Get PDF
    The rate at which animals ingest food is a fundamental part of animal ecology although it is rarely quantified, with recently-developed animal-attached tags providing a potentially viable approach. However, to date, these methods lack clarity in differentiating various eating behaviours, such as ‘chewing’ from ‘biting’. The aims of this study were to examine the use of inter-mandibular angle sensors (IMASENs), to quantify grazing behaviour in herbivores including cattle (Bos taurus), sheep (Ovis aries) and pygmy goats (Capra aegagrus hircus) eating different foodstuffs. Specifically, we aimed to: (1) quantify jaw movements of each species and determine differences between biting and chewing; (2) assess whether different food types can be discerned from jaw movements; and (3) determine whether species-specific differences in jaw movements can be detected. Subjects were filmed while consuming concentrate, hay, grass and browse to allow comparison of observed and IMASEN-recorded jaw movements. This study shows that IMASENs can accurately detect jaw movements of feeding herbivores, and, based on the rate of jaw movements, can classify biting (taking new material into the mouth) from chewing (masticating material already in the mouth). The biting behaviours associated with concentrate pellets could be identified easily as these occurred at the fastest rate for all species. However, the rates of chewing different food items were more difficult to discern from one another. Comparison of chew:bite ratios of the various food types eaten by each species showed no differences. Species differences could be identified using bite and chew rates. Cattle consistently displayed slower bite and chew rates to sheep and pygmy goats when feeding, while sheep and pygmy goats showed similar bite and chew rates when feeding on concentrate pellets. Species-specific differences in chew:bite ratios were not identified. Magnetometry has the potential to record quantitative aspects of foraging such as the feeding duration, food handling time and food type. This is of major importance for researchers interested in both captive (e.g., agricultural productivity) and wild animal foraging dynamics as it can provide quantitative data with minimal observer interference

    Medulloblastoma has a global impact on health related quality of life: Findings from an international cohort.

    Get PDF
    BackgroundUnderstanding the global impact of medulloblastoma on health related quality of life (HRQL) is critical to characterizing the broad impact of this disease and realizing the benefits of modern treatments. We evaluated HRQL in an international cohort of pediatric medulloblastoma patients.MethodsSeventy-six patients were selected from 10 sites across North America, Europe, and Asia, who participated in the Medulloblastoma Advanced Genomics International Consortium (MAGIC). The Health Utilities Index (HUI) was administered to patients and/or parents at each site. Responses were used to determine overall HRQL and attributes (ie specific subdomains). The impact of various demographic and medical variables on HRQL was considered-including molecular subgroup.ResultsThe majority of patients reported having moderate or severe overall burden of morbidity for both the HUI2 and HUI3 (HUI2 = 60%; HUI3 = 72.1%) when proxy-assessed. Self-care in the HUI2 was rated as higher (ie better outcome) for patients from Western versus Eastern sites, P = .02. Patients with nonmetastatic status had higher values (ie better outcomes) for the HUI3 hearing, HUI3 pain, and HUI2 pain, all P < .05. Patients treated with a gross total resection also had better outcomes for the HUI3 hearing (P = .04). However, those who underwent a gross total resection reported having worse outcomes on the HUI3 vision (P = .02). No differences in HRQL were evident as a function of subgroup.ConclusionsBy examining an international sample of survivors, we characterized the worldwide impact of medulloblastoma. This is a critical first step in developing global standards for evaluating long-term outcomes

    Squirrelpox virus: assessing prevalence, transmission and environmental degradation

    Get PDF
    Red squirrels (Sciurus vulgaris) declined in Great Britain and Ireland during the last century, due to habitat loss and the introduction of grey squirrels (Sciurus carolinensis), which competitively exclude the red squirrel and act as a reservoir for squirrelpox virus (SQPV). The disease is generally fatal to red squirrels and their ecological replacement by grey squirrels is up to 25 times faster where the virus is present. We aimed to determine: (1) the seropositivity and prevalence of SQPV DNA in the invasive and native species at a regional scale; (2) possible SQPV transmission routes; and, (3) virus degradation rates under differing environmental conditions. Grey (n = 208) and red (n = 40) squirrel blood and tissues were sampled. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) techniques established seropositivity and viral DNA presence, respectively. Overall 8% of squirrels sampled (both species combined) had evidence of SQPV DNA in their tissues and 22% were in possession of antibodies. SQPV prevalence in sampled red squirrels was 2.5%. Viral loads were typically low in grey squirrels by comparison to red squirrels. There was a trend for a greater number of positive samples in spring and summer than in winter. Possible transmission routes were identified through the presence of viral DNA in faeces (red squirrels only), urine and ectoparasites (both species). Virus degradation analyses suggested that, after 30 days of exposure to six combinations of environments, there were more intact virus particles in scabs kept in warm (25°C) and dry conditions than in cooler (5 and 15°C) or wet conditions. We conclude that SQPV is present at low prevalence in invasive grey squirrel populations with a lower prevalence in native red squirrels. Virus transmission could occur through urine especially during warm dry summer conditions but, more notably, via ectoparasites, which are shared by both species

    Energetics and water flux in the subterranean rodent family Bathyergidae

    Get PDF
    The doubly labeled water (DLW) technique and indirect calorimetry enable measurement of an animal’s daily energy expenditure (DEE, kJ/day), resting metabolic rate (RMR, kJ/d), sustained metabolic scope (SusMS), body fat content (BF, %) as well as water turnover (WTO, ml/day), and water economy index (ml/kJ). Small mammals have been the primary focus of many of the DLW studies to date. From large multi-species analyses of the energetics and water flux of aboveground small mammals, well-defined trends have been observed. These trends mainly refer to an adaptive advantage for lower RMR, DEE, SusMS, WTO and WEI in more ariddwelling animals to increase water and energy savings under low and unpredictable resource availability. The study of the subterranean rodent family Bathyergidae (African mole-rats) has been of particular interest with regards to field metabolic rate and metabolic studies. Although a great deal of research has been conducted on the Bathyergidae, a complete overview and multispecies analysis of the energetics and water flux of this family is lacking. Consequently, we assessed DEE, RMR, SusMS, BF, WTO and WEI across several different species of bathyergids from various climatic regions, and compared these to the established patterns of energetics and water flux for aboveground rodents. There was notable variation across the Bathyergidae inhabiting areas with different aridities, often contrary to the variations observed in above-ground species. These include increased DEE and WEI in arid-dwelling bathyergid species. While the climate was not a clear factor when predicting the SusMS of a bathyergid species, rather the degree of group living was a strong driver of SusMS, with solitary species possessing the highest SusMS compared to the socially living species. We conclude that the constraints of the underground lifestyle and the consequent spectrum of social behaviors possessed by the family Bathyergidae are most likely to be more crucial to their energetics and water flux than their habitat; however other important unstudied factors may still be at play. More so, this study provides evidence that often unreported parameters, measured through use of the DLW technique (such as BF and WEI) can enable species to be identified that might be at particular risk to climate change.The SARChI Chair of Mammal Behavioral Ecology and Physiology, National Research Foundation RSA, the British Ecological Society (SEPG), and the National Science Foundation, United States.http://frontiersin.org/Ecology_and_Evolutiondm2022Zoology and Entomolog

    How often should dead-reckoned animal movement paths be corrected for drift?

    Get PDF
    Background Understanding what animals do in time and space is important for a range of ecological questions, however accurate estimates of how animals use space is challenging. Within the use of animal-attached tags, radio telemetry (including the Global Positioning System, ‘GPS’) is typically used to verify an animal’s location periodically. Straight lines are typically drawn between these ‘Verified Positions’ (‘VPs’) so the interpolation of space-use is limited by the temporal and spatial resolution of the system’s measurement. As such, parameters such as route-taken and distance travelled can be poorly represented when using VP systems alone. Dead-reckoning has been suggested as a technique to improve the accuracy and resolution of reconstructed movement paths, whilst maximising battery life of VP systems. This typically involves deriving travel vectors from motion sensor systems and periodically correcting path dimensions for drift with simultaneously deployed VP systems. How often paths should be corrected for drift, however, has remained unclear. Methods and results Here, we review the utility of dead-reckoning across four contrasting model species using different forms of locomotion (the African lion Panthera leo, the red-tailed tropicbird Phaethon rubricauda, the Magellanic penguin Spheniscus magellanicus, and the imperial cormorant Leucocarbo atriceps). Simulations were performed to examine the extent of dead-reckoning error, relative to VPs, as a function of Verified Position correction (VP correction) rate and the effect of this on estimates of distance moved. Dead-reckoning error was greatest for animals travelling within air and water. We demonstrate how sources of measurement error can arise within VP-corrected dead-reckoned tracks and propose advancements to this procedure to maximise dead-reckoning accuracy. Conclusions We review the utility of VP-corrected dead-reckoning according to movement type and consider a range of ecological questions that would benefit from dead-reckoning, primarily concerning animal–barrier interactions and foraging strategies.Additional co-authors: Angela Bruns, O. Louis van Schalkwyk, Nik C. Cole, Vikash Tatayah, Luca Börger, James Redcliffe, Stephen H. Bell, Nikki J. Marks, Nigel C. Bennett, Mariano H. Tonini, Hannah J. Williams, Carlos M. Duarte, Martin C. van Rooyen, Mads F. Bertelsen, Craig J. Tambling & Rory P. Wilso

    An “orientation sphere” visualization for examining animal head movements

    Get PDF
    Animal behavior is elicited, in part, in response to external conditions, but understanding how animals perceive the environment and make the decisions that bring about these behavioral responses is challenging. Animal heads often move during specific behaviors and, additionally, typically have sensory systems (notably vision, smell, and hearing) sampling in defined arcs (normally to the front of their heads). As such, head‐mounted electronic sensors consisting of accelerometers and magnetometers, which can be used to determine the movement and directionality of animal heads (where head “movement” is defined here as changes in heading [azimuth] and/or pitch [elevation angle]), can potentially provide information both on behaviors in general and also clarify which parts of the environment the animals might be prioritizing (“environmental framing”). We propose a new approach to visualize the data of such head‐mounted tags that combines the instantaneous outputs of head heading and pitch in a single intuitive spherical plot. This sphere has magnetic heading denoted by “longitude” position and head pitch by “latitude” on this “orientation sphere” (O‐sphere). We construct the O‐sphere for the head rotations of a number of vertebrates with contrasting body shape and ecology (oryx, sheep, tortoises, and turtles), illustrating various behaviors, including foraging, walking, and environmental scanning. We also propose correcting head orientations for body orientations to highlight specific heading‐independent head rotation, and propose the derivation of O‐sphere‐metrics, such as angular speed across the sphere. This should help identify the functions of various head behaviors. Visualizations of the O‐sphere provide an intuitive representation of animal behavior manifest via head orientation and rotation. This has ramifications for quantifying and understanding behaviors ranging from navigation through vigilance to feeding and, when used in tandem with body movement, should provide an important link between perception of the environment and response to it in free‐ranging animals.Deanship of Scientific Research at the King Saud University through Vice Deanship of Research Chairs; The National Geographic Global Exploration Fund. Grant Number: #GEFNE89‐13; European Research Council under the European Union's Horizon 2020 research and innovation program Grant. Grant Number: 715874; Royal Society/Wolfson Lab refurbishment scheme; Royal Society. Grant Number: 2009/R3 JP090604; Natural Environment Research Council. Grant Numbers: NE/I002030/1, NE/R001669/1; King Abdullah University of Science and Technology. Grant Number: CAASE.http://www.ecolevol.orghj2020Mammal Research InstituteZoology and Entomolog

    The role of inflammation in epilepsy.

    Get PDF
    Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of epilepsy, relatively little is known about the processes leading to the generation of individual seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in our knowledge hamper the development of better preventive treatments and cures for the approximately 30% of epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing body of evidence that supports the involvement of inflammatory mediators-released by brain cells and peripheral immune cells-in both the origin of individual seizures and the epileptogenic process. We first describe aspects of brain inflammation and immunity, before exploring the evidence from clinical and experimental studies for a relationship between inflammation and epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related neuronal death. Further insight into the complex role of inflammation in the generation and exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs, which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease pathogenesis

    Search for the doubly charmed baryon Ω cc +

    Get PDF
    Abstract: A search for the doubly charmed baryon Ωcc+ with the decay mode Ωcc+ → Ξc+K−π+ is performed using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment from 2016 to 2018, corresponding to an integrated luminosity of 5.4 fb−1. No significant signal is observed within the invariant mass range of 3.6 to 4.0GeV/c2. Upper limits are set on the ratio R of the production cross-section times the total branching fraction of the Ωcc+ → Ξc+K−π+ decay with respect to the Ξcc++→Λc+K−π+π+ decay. Upper limits at 95% credibility level for R in the range 0.005 to 0.11 are obtained for different hypotheses on the Ωcc+ mass and lifetime in the rapidity range from 2.0 to 4.5 and transverse momentum range from 4 to 15 GeV/c

    Winter Is Coming: Seasonal Variation in Resting Metabolic Rate of the European Badger (Meles meles)

    Get PDF
    Resting metabolic rate (RMR) is a measure of the minimum energy requirements of an animal at rest, and can give an indication of the costs of somatic maintenance. We measured RMR of free-ranging European badgers (Meles meles) to determine whether differences were related to sex, age and season. Badgers were captured in live-traps and placed individually within a metabolic chamber maintained at 20 ± 1°C. Resting metabolic rate was determined using an open-circuit respirometry system. Season was significantly correlated with RMR, but no effects of age or sex were detected. Summer RMR values were significantly higher than winter values (mass-adjusted mean ± standard error: 2366 ± 70 kJ⋅d(-1); 1845 ± 109 kJ⋅d(-1), respectively), with the percentage difference being 24.7%. While under the influence of anaesthesia, RMR was estimated to be 25.5% lower than the combined average value before administration, and after recovery from anaesthesia. Resting metabolic rate during the autumn and winter was not significantly different to allometric predictions of basal metabolic rate for mustelid species weighing 1 kg or greater, but badgers measured in the summer had values that were higher than predicted. Results suggest that a seasonal reduction in RMR coincides with apparent reductions in physical activity and body temperature as part of the overwintering strategy ('winter lethargy') in badgers. This study contributes to an expanding dataset on the ecophysiology of medium-sized carnivores, and emphasises the importance of considering season when making predictions of metabolic rate
    corecore