36 research outputs found

    Multiple dynamical time-scales in networks with hierarchically nested modular organization

    Full text link
    Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters defined at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intra-modular and slow inter-modular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales.Comment: 10 pages, 4 figure

    An analysis of consumer protection for gamblers across different online gambling operators in Ireland: a descriptive study

    Get PDF
    The aim of the present study was to evaluate the responsible gambling tools which are available to online gamblers at Irish online gambling websites. The present study used a similar methodology to a recent study carried out on the world’s most popular websites (Bonello and Griffiths Gaming Law Review and Economics, 21, 278–285, 2017), where 50 of the most advertised online gambling websites were evaluated in relation to their responsible gambling (RG) practices. The present study evaluated 39 gambling websites with either a “.ie” or “.com/ie” domain. Each website was evaluated by checking for a number of RG practices, including presence of a dedicated RG page; age verification; access to gambling account history; the availability of RG tools, such as limit setting facilities and exclusion settings; and links to limit-setting options on the deposit page. Descriptive statistics were then performed on the results from each website. Of the 39 online gambling operators identified, 22 redirected gamblers to a “.com” domain, while 17 operators remained as a “.ie” domain. Thirty-five websites (89.7%) visited had a dedicated RG page. Responsible gambling features were evaluated and demonstrated to be available in an inconsistent manner across online gambling websites. Irish websites were shown to perform poorly in comparison with non-Irish counterparts in the provision of RG tools. The researchers of the present study are not aware of any similar studies conducted to date in Ireland

    Psychological responses to the proximity of climate change

    Get PDF
    A frequent suggestion to increase individuals’ willingness to take action on climate change and to support relevant policies is to highlight its proximal consequences. However, previous studies that have tested this proximising approach have not revealed the expected positive effects on individual action and support for addressing climate change. We present three lines of psychological reasoning that provide compelling arguments as to why highlighting proximal impacts of climate change might not be as effective a way to increase individual mitigation and adaptation efforts as is often assumed. Our contextualisation of the proximising approach within established psychological research suggests that, depending on the particular theoretical perspective one takes to this issue, and on specific individual characteristics suggested by these perspectives, proximising can bring about the intended positive effects, can have no (visible) effect, or can even backfire. Thus, the effects of proximising are much more complex than is commonly assumed. Revealing this complexity contributes to a refined theoretical understanding of the role psychological distance plays in the context of climate change and opens up further avenues for future research and for interventions

    Insertion of Horizontally Transferred Genes within Conserved Syntenic Regions of Yeast Genomes

    Get PDF
    Horizontal gene transfer has been occasionally mentioned in eukaryotic genomes, but such events appear much less numerous than in prokaryotes, where they play important functional and evolutionary roles. In yeasts, few independent cases have been described, some of which corresponding to major metabolic functions, but no systematic screening of horizontally transferred genes has been attempted so far. Taking advantage of the synteny conservation among five newly sequenced and annotated genomes of Saccharomycetaceae, we carried out a systematic search for HGT candidates amidst genes present in only one species within conserved synteny blocks. Out of 255 species-specific genes, we discovered 11 candidates for HGT, based on their similarity with bacterial proteins and on reconstructed phylogenies. This corresponds to a minimum of six transfer events because some horizontally acquired genes appear to rapidly duplicate in yeast genomes (e.g. YwqG genes in Kluyveromyces thermotolerans and serine recombinase genes of the IS607 family in Saccharomyces kluyveri). We show that the resulting copies are submitted to a strong functional selective pressure. The mechanisms of DNA transfer and integration are discussed, in relation with the generally small size of HGT candidates. Our results on a limited set of species expand by 50% the number of previously published HGT cases in hemiascomycetous yeasts, suggesting that this type of event is more frequent than usually thought. Our restrictive method does not exclude the possibility that additional HGT events exist. Actually, ancestral events common to several yeast species must have been overlooked, and the absence of homologs in present databases leaves open the question of the origin of the 244 remaining species-specific genes inserted within conserved synteny blocks

    When Is a Preannounced New Product Likely to Be Delayed?

    Get PDF
    Consider that a firm announces a deadline for a new product introduction. Conditional on such a preannouncement, how must an external observer evaluate whether the product will be delayed beyond that deadline? Using data collected from managers in the computer hardware, software, and telecommunications industries, the authors present an analysis that demonstrates that delays in new product introductions beyond preannounced deadlines can be jointly explained by factors related to (1) the firm's motivations to delay the product, (2) the presence of constraints that prevent delay (or the availability of opportunities to delay the product), and (3) the firm's abilities pertaining to product development

    Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches

    Get PDF
    Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB) and Posterior Weighted Averaging (PWA) methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC) algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics

    Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure?

    Get PDF
    Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome
    corecore