51 research outputs found

    A risk profile for information fusion algorithms

    Full text link
    E.T. Jaynes, originator of the maximum entropy interpretation of statistical mechanics, emphasized that there is an inevitable trade-off between the conflicting requirements of robustness and accuracy for any inferencing algorithm. This is because robustness requires discarding of information in order to reduce the sensitivity to outliers. The principal of nonlinear statistical coupling, which is an interpretation of the Tsallis entropy generalization, can be used to quantify this trade-off. The coupled-surprisal, -ln_k (p)=-(p^k-1)/k, is a generalization of Shannon surprisal or the logarithmic scoring rule, given a forecast p of a true event by an inferencing algorithm. The coupling parameter k=1-q, where q is the Tsallis entropy index, is the degree of nonlinear coupling between statistical states. Positive (negative) values of nonlinear coupling decrease (increase) the surprisal information metric and thereby biases the risk in favor of decisive (robust) algorithms relative to the Shannon surprisal (k=0). We show that translating the average coupled-surprisal to an effective probability is equivalent to using the generalized mean of the true event probabilities as a scoring rule. The metric is used to assess the robustness, accuracy, and decisiveness of a fusion algorithm. We use a two-parameter fusion algorithm to combine input probabilities from N sources. The generalized mean parameter 'alpha' varies the degree of smoothing and raising to a power N^beta with beta between 0 and 1 provides a model of correlation.Comment: 15 pages, 4 figure

    Correcting surface wave bias in structure function estimates of turbulent kinetic energy dissipation rate

    Get PDF
    The combination of acoustic Doppler current profilers and the structure function methodology provides an attractive approach to making extended time series measurements of oceanic turbulence (the rate of turbulent kinetic energy dissipation ε) from moorings. However, this study shows that for deployments in the upper part of the water column, estimates of ε will be biased by the vertical gradient in wave orbital velocities. To remove this bias, a modified structure function methodology is developed that exploits the differing length scale dependencies of the contributions to the structure function resulting from turbulent and wave orbital motions. The success of the modified method is demonstrated through a comparison of ε estimates based on data from instruments at three depths over a 3-month period under a wide range of conditions, with appropriate scalings for wind stress and convective forcing

    Increasing nutrient fluxes and mixing regime changes in the eastern Arctic Ocean

    Get PDF
    Primary productivity in the Arctic Ocean is experiencing dramatic changes linked to the receding sea ice cover. The vertical transport of nutrients from deeper water layers is the limiting factor for primary production. Here, we compare coincident profiles of turbulence and nutrients from the Siberian Seas in 2007, 2008, and 2018. In all years, the water column structure in the upstream region of the Arctic Boundary Current promotes upward nutrient transport, in contrast to the regions further downstream, and there are first indications for an eastward progression of these conditions. In summer 2018, strongly enhanced vertical nitrate flux and primary production above the continental slope were observed, likely related to a remote storm. The estimated contribution of these elevated fluxes above the slope to the Pan-Arctic vertical nitrate supply is comparable with the basin-wide transport, and is predicted to increase with declining sea ice cover in the future

    Relationships Between Urinary Metals and Diabetes Traits among Mexican americans in Starr County, Texas, Usa

    Get PDF
    Hispanics/Latinos have higher rates of type 2 diabetes (T2D), and the origins of these disparities are poorly understood. Environmental endocrine-disrupting chemicals (EDCs), including some metals and metalloids, are implicated as diabetes risk factors. Data indicate that Hispanics/Latinos may be disproportionately exposed to EDCs, yet they remain understudied with respect to environmental exposures and diabetes. The objective of this study is to determine how metal exposures contribute to T2D progression by evaluating the associations between 8 urinary metals and measures of glycemic status in 414 normoglycemic or prediabetic adults living in Starr County, Texas, a Hispanic/Latino community with high rates of diabetes and diabetes-associated mortality. We used multivariable linear regression to quantify the differences in homeostatic model assessments for pancreatic β-cell function, insulin resistance, and insulin sensitivity (HOMA-β, HOMA-IR, HOMA-S, respectively), plasma insulin, plasma glucose, and hemoglobin A1c (HbA1c) associated with increasing urinary metal concentrations. Quantile-based g-computation was utilized to assess mixture effects. After multivariable adjustment, urinary arsenic and molybdenum were associated with lower HOMA-β, HOMA-IR, and plasma insulin levels and higher HOMA-S. Additionally, higher urinary copper levels were associated with a reduced HOMA-β. Lastly, a higher concentration of the 8 metal mixtures was associated with lower HOMA-β, HOMA-IR, and plasma insulin levels as well as higher HOMA-S. Our data indicate that arsenic, molybdenum, copper, and this metal mixture are associated with alterations in measures of glucose homeostasis among non-diabetics in Starr County. This study is one of the first to comprehensively evaluate associations of urinary metals with glycemic measures in a high-risk Mexican American population

    The deepwater oxygen deficit in stratified shallow seas is mediated by diapycnal mixing

    Get PDF
    Seasonally stratified shelf seas are amongst the most biologically productive on the planet. A consequence is that the deeper waters can become oxygen deficient in late summer. Predictions suggest global warming will accelerate this deficiency. Here we integrate turbulence timeseries with vertical profiles of water column properties from a seasonal stratified shelf sea to estimate oxygen and biogeochemical fluxes. The profiles reveal a significant subsurface chlorophyll maximum and associated mid-water oxygen maximum. We show that the oxygen maximum supports both upward and downwards O2 fluxes. The upward flux is into the surface mixed layer, whilst the downward flux into the deep water will partially off-set the seasonal O2 deficit. The results indicate the fluxes are sensitive to both the water column structure and mixing rates implying the development of the seasonal O2 deficit is mediated by diapcynal mixing. Analysis of current shear indicate that the downward flux is supported by tidal mixing, whilst the upwards flux is dominated by wind driven near-inertial shear. Summer storminess therefore plays an important role in the development of the seasonal deep water O2 deficit

    The deepwater oxygen deficit in stratified shallow seas is mediated by diapycnal mixing.

    Get PDF
    Seasonally stratified shelf seas are amongst the most biologically productive on the planet. A consequence is that the deeper waters can become oxygen deficient in late summer. Predictions suggest global warming will accelerate this deficiency. Here we integrate turbulence timeseries with vertical profiles of water column properties from a seasonal stratified shelf sea to estimate oxygen and biogeochemical fluxes. The profiles reveal a significant subsurface chlorophyll maximum and associated mid-water oxygen maximum. We show that the oxygen maximum supports both upward and downwards O2 fluxes. The upward flux is into the surface mixed layer, whilst the downward flux into the deep water will partially off-set the seasonal O2 deficit. The results indicate the fluxes are sensitive to both the water column structure and mixing rates implying the development of the seasonal O2 deficit is mediated by diapcynal mixing. Analysis of current shear indicate that the downward flux is supported by tidal mixing, whilst the upwards flux is dominated by wind driven near-inertial shear. Summer storminess therefore plays an important role in the development of the seasonal deep water O2 deficit

    Tidal Conversion and Mixing Poleward of the Critical Latitude (an Arctic Case Study)

    Get PDF
    ©2017. American Geophysical Union. The tides are a major source of the kinetic energy supporting turbulent mixing in the global oceans. The prime mechanism for the transfer of tidal energy to turbulent mixing results from the interaction between topography and stratified tidal flow, leading to the generation of freely propagating internal waves at the period of the forcing tide. However, poleward of the critical latitude (where the period of the principal tidal constituent exceeds the local inertial period), the action of the Coriolis force precludes the development of freely propagating linear internal tides. Here we focus on a region of sloping topography, poleward of the critical latitude, where there is significant conversion of tidal energy and the flow is supercritical (Froude number, Fr > 1). A high-resolution nonlinear modeling study demonstrates the key role of tidally generated lee waves and supercritical flow in the transfer of energy from the barotropic tide to internal waves in these high-latitude regions. Time series of flow and water column structure from the region of interest show internal waves with characteristics consistent with those predicted by the model, and concurrent microstructure dissipation measurements show significant levels of mixing associated with these internal waves. The results suggest that tidally generated lee waves are a key mechanism for the transfer of energy from the tide to turbulence poleward of the critical latitude
    • …
    corecore