3,912 research outputs found

    The key position: influence of staple location on constrained peptide conformation and binding

    Get PDF
    First published online 29 Sep 2016Constrained α-helical peptides are showing potential as biological probes and therapeutic agents that target protein-protein interactions. However, the factors that determine the optimal constraint locations are still largely unknown. Using the β-integrin/talin protein interaction as a model system, we examine the effect of constraint location on helical conformation, as well as binding affinity, using circular dichroism and NMR spectroscopy. Stapling increased the overall helical content of each integrin-based peptide tested. However, NMR analysis revealed that different regions within the peptide are stabilised, depending on constraint location, and that these differences correlate with the changes observed in talin binding mode and affinity. In addition, we show that examination of the atomic structure of the parent peptide provides insight into the appropriate placement of helical constraints.Kelly L. Keeling, Okki Cho, Denis B. Scanlon, Grant W. Booker, Andrew D. Abell and Kate L. Wegene

    N incorporation and associated localized vibrational modes in GaSb

    Get PDF
    We present results of electronic structure calculations on the N-related localized vibrational modes in the dilute nitride alloy GaSb1−xNx. By calculating the formation energies of various possible N incorporation modes in the alloy, we determine the most favorable N configurations, and we calculate their vibrational mode frequencies using density functional theory under the generalized gradient approximation to electron exchange and correlation, including the effects of the relativistic spin-orbit interactions. For a single N impurity, we find substitution on an Sb site, NSb, to be most favorable, and for a two-N-atom complex, we find the N-N split interstitial on an Sb site to be most favorable. For these defects, as well as, for comparison, defects comprising two N atoms on neighboring Sb sites and a N-Sb split interstitial on an Sb site, we find well-localized vibration modes (LVMs), which should be experimentally observable. The frequency of the triply degenerate LVM associated with NSb is determined to be 427.6 cm−1. Our results serve as a guide to future experimental studies to elucidate the incorporation of small concentrations of N in GaSb, which is known to lead to a reduction of the band gap and opens the possibility of using the material for long-wavelength applications

    Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2){1-x}(CuCrO2){x}

    Get PDF
    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl(1-x)Cr(x)O2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Vegard law and increase with x as expected. The effective moment is equal to the Cr^3+ spin-only S = 3/2 value throughout the entire solid solution. Theta is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, J_BB was estimated by mean-field theory to be 2.0 meV. Despite the sizable Theta, long-range antiferromagnetic order does not develop until very large x, and is preceeded by glassy behavior. Data presented here, and that on dilute Al-substitution from Okuda et al., suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Neel temperature, consistent with its magnetic frustration. Uncompensated short-range interactions are present in the Al-substituted samples and are likely a result of chemical disorder

    Band energy control of molybdenum oxide by surface hydration

    Get PDF
    EPSRC (Grants EP/M009580/1, EP/J017361/1, EP/I01330X/1, and EP/I028641/1), the Royal Society, and the European Research Council. The work benefited from the University of Bath's High Performance Computing Facility, and access to the HECToR supercomputer through membership of the UKs HPC Materials Chemistry Consortium, which is funded by EPSRC (Grant No. EP/F067496) and the UltraFOx grant

    Antiferromagnetism at T > 500 K in the Layered Hexagonal Ruthenate SrRu2O6

    Get PDF
    We report an experimental and computational study of magnetic and electronic properties of the layered Ru(V) oxide SrRu2O6 (hexagonal, P-3 1m), which shows antiferromagnetic order with a N\'eel temperature of 563(2) K, among the highest for 4d oxides. Magnetic order occurs both within edge-shared octahedral sheets and between layers and is accompanied by anisotropic thermal expansivity that implies strong magnetoelastic coupling of Ru(V) centers. Electrical transport measurements using focused ion beam induced deposited contacts on a micron-scale crystallite as a function of temperature show p-type semiconductivity. The calculated electronic structure using hybrid density functional theory successfully accounts for the experimentally observed magnetic and electronic structure and Monte Carlo simulations reveals how strong intralayer as well as weaker interlayer interactions are a defining feature of the high temperature magnetic order in the material.Comment: Physical Review B 2015 accepted for publicatio

    Galore: Broadening and weighting for simulation of photoelectron spectroscopy

    Get PDF
    Galore simplifies and automates the process of simulating photoelectron spectra from ab initio calculations. This replaces the tedious process of extracting and interpolating crosssectional weights from reference data and generates tabulated data or publication-ready plots as needed. The broadening tools may also be used to obtain realistic simulated spectra from a theoretical set of discrete lines (e.g. infrared or Raman spectroscopy)

    Understanding doping anomalies in degenerate p-type semiconductor LaCuOSe

    Get PDF
    The failure to develop a degenerate, wide band gap, p-type oxide material has been a stumbling block for the optoelectronics industry for decades. Mg-doped LaCuOSe has recently emerged as a very promising p-type anode layer for optoelectronic devices, displaying high conductivities and low hole injection barriers. Despite these promising results, many questions regarding the defect chemistry of this system remain unanswered, namely (i) why does this degenerate semiconductor not display a Moss–Burnstein shift?, (ii) what is the origin of conductivity in doped and un-doped samples?, and (iii) why is Mg reported to be the best dopant, despite the large cation size mismatch between Mg and La? In this article we use screened hybrid density functional theory to study both intrinsic and extrinsic defects in LaCuOSe, and identify for the first time the source of charge carriers in this system. We successfully explain why LaCuOSe does not exhibit a Moss–Burstein shift, and we identify the source of the subgap optical absorption reported in experiments. Lastly we demonstrate that Mg doping is not the most efficient mechanism for p-type doping LaCuOSe, and propose an experimental reinvestigation of this system

    Orbital-selective band hybridisation at the charge density wave transition in monolayer TiTe2

    Get PDF
    Funding: We gratefully acknowledge support from the Leverhulme Trust and the Royal Society. W.R. is grateful to University College London for awarding a Graduate Research Scholarship and an Overseas Research Scholarship. O.J.C. and K.U. acknowledge PhD studentship support from the UK Engineering and Physical Sciences Research Council (EPSRC, Grant Nos. EP/K503162/1 and EP/L015110/1). I.M. and E.A.-M. acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. S.R.K. acknowledges the EPSRC Centre for Doctoral Training in the Advanced Characterisation of Materials (CDT-ACM, EP/S023259/1) for funding a PhD studentship.Reducing the thickness of a material to its two dimensional (2D) limit can have dramatic consequences for its collective electronic states, including magnetism, superconductivity, and charge and spin ordering. An extreme case is TiTe2, where a charge density wave (CDW) emerges in the single-layer which is absent for the bulk compound, and whose origin is still poorly understood. Here, we investigate the electronic band structure evolution across this CDW transition using temperature-dependent angle-resolved photoemission spectroscopy. Our study reveals an orbital-selective band hybridisation between the backfolded conduction and valence bands occurring at the CDW phase transition, which in turn leads to a significant electronic energy gain, underpinning the CDW transition. For the bulk compound, we show how this energy gain is almost completely suppressed due to the three-dimensionality of the electronic band structure, including via a kz-dependent band inversion which switches the orbital character of the valence states. Our study thus sheds new light on how control of the electronic dimensionality can be used to trigger the emergence of new collective states in 2D materials.Publisher PDFPeer reviewe
    • …
    corecore