44 research outputs found

    Dominant oceanic bacteria secure phosphate using a large extracellular buffer

    Get PDF
    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate

    Membrane organization of photosystem I complexes in the most abundant phototroph on Earth

    Get PDF
    Prochlorococcus is a major contributor to primary production, and globally the most abundant photosynthetic genus of picocyanobacteria because it can adapt to highly stratified low-nutrient conditions that are characteristic of the surface ocean. Here, we examine the structural adaptations of the photosynthetic thylakoid membrane that enable different Prochlorococcus ecotypes to occupy high-light, low-light and nutrient-poor ecological niches. We used atomic force microscopy to image the different photosystem I (PSI) membrane architectures of the MED4 (high-light) Prochlorococcus ecotype grown under high-light and low-light conditions in addition to the MIT9313 (low-light) and SS120 (low-light) Prochlorococcus ecotypes grown under low-light conditions. Mass spectrometry quantified the relative abundance of PSI, photosystem II (PSII) and cytochrome b6f complexes and the various Pcb proteins in the thylakoid membrane. Atomic force microscopy topographs and structural modelling revealed a series of specialized PSI configurations, each adapted to the environmental niche occupied by a particular ecotype. MED4 PSI domains were loosely packed in the thylakoid membrane, whereas PSI in the low-light MIT9313 is organized into a tightly packed pseudo-hexagonal lattice that maximizes harvesting and trapping of light. There are approximately equal levels of PSI and PSII in MED4 and MIT9313, but nearly twofold more PSII than PSI in SS120, which also has a lower content of cytochrome b6f complexes. SS120 has a different tactic to cope with low-light levels, and SS120 thylakoids contained hundreds of closely packed Pcb–PSI supercomplexes that economize on the extra iron and nitrogen required to assemble PSI-only domains. Thus, the abundance and widespread distribution of Prochlorococcus reflect the strategies that various ecotypes employ for adapting to limitations in light and nutrient levels

    A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere

    Get PDF
    The regeneration of bioavailable phosphate from immobilized organophosphorus represents a key process in the global phosphorus cycle and is facilitated by enzymes known as phosphatases. Most bacteria possess at least one of three phosphatases with broad substrate specificity, known as PhoA, PhoX, and PhoD, whose activity is optimal under alkaline conditions. The production and activity of these phosphatases is repressed by phosphate availability. Therefore, they are only fully functional when bacteria experience phosphorus-limiting growth conditions. Here, we reveal a previously overlooked phosphate-insensitive phosphatase, PafA, prevalent in Bacteroidetes, which is highly abundant in nature and represents a major route for the regeneration of environmental phosphate. Using the enzyme from Flavobacterium johnsoniae, we show that PafA is highly active toward phosphomonoesters, is fully functional in the presence of excess phosphate, and is essential for growth on phosphorylated carbohydrates as a sole carbon source. These distinct properties of PafA may expand the metabolic niche of Bacteroidetes by enabling the utilization of abundant organophosphorus substrates as C and P sources, providing a competitive advantage when inhabiting zones of high microbial activity and nutrient demand. PafA, which is constitutively synthesized by soil and marine flavobacteria, rapidly remineralizes phosphomonoesters releasing bioavailable phosphate that can be acquired by neighboring cells. The pafA gene is highly diverse in plant rhizospheres and is abundant in the global ocean, where it is expressed independently of phosphate availability. PafA therefore represents an important enzyme in the context of global biogeochemical cycling and has potential applications in sustainable agriculture

    Phosphorus stress induces the synthesis of novel glycolipids in Pseudomonas aeruginosa that confer protection against a last-resort antibiotic

    Get PDF
    Pseudomonas aeruginosa is a nosocomial pathogen with a prevalence in immunocompromised individuals and is particularly abundant in the lung microbiome of cystic fibrosis patients. A clinically important adaptation for bacterial pathogens during infection is their ability to survive and proliferate under phosphorus-limited growth conditions. Here, we demonstrate that P. aeruginosa adapts to P-limitation by substituting membrane glycerophospholipids with sugar-containing glycolipids through a lipid renovation pathway involving a phospholipase and two glycosyltransferases. Combining bacterial genetics and multi-omics (proteomics, lipidomics and metatranscriptomic analyses), we show that the surrogate glycolipids monoglucosyldiacylglycerol and glucuronic acid-diacylglycerol are synthesised through the action of a new phospholipase (PA3219) and two glycosyltransferases (PA3218 and PA0842). Comparative genomic analyses revealed that this pathway is strictly conserved in all P. aeruginosa strains isolated from a range of clinical and environmental settings and actively expressed in the metatranscriptome of cystic fibrosis patients. Importantly, this phospholipid-to-glycolipid transition comes with significant ecophysiological consequence in terms of antibiotic sensitivity. Mutants defective in glycolipid synthesis survive poorly when challenged with polymyxin B, a last-resort antibiotic for treating multi-drug resistant P. aeruginosa. Thus, we demonstrate an intriguing link between adaptation to environmental stress (nutrient availability) and antibiotic resistance, mediated through membrane lipid renovation that is an important new facet in our understanding of the ecophysiology of this bacterium in the lung microbiome of cystic fibrosis patients

    Refining and regaining skills in fixation/diversification stage performers: The Five-A Model

    Get PDF
    Technical change is one of many factors underpinning success in elite, fixation/diversification stage performers. Surprisingly, however, there is a dearth of research pertaining to this process or the most efficacious methods used to bring about such a change. In this paper we highlight the emergent processes, yet also the lack in mechanistic comprehension surrounding technical change, addressing issues within the motor control, sport psychology, coaching and choking literature. More importantly, we seek an understanding of how these changes can be made more secure to competitive pressure, and how this can be embedded within the process of technical change. Following this review, we propose The Five-A Model based on successful coaching techniques, psychosocial concomitants, the avoidance of choking and principles of effective behaviour change. Specific mechanisms for each stage are discussed, with a focus on the use of holistic rhythm-based cues as a possible way of internalising changes. Finally, we suggest the need for further research to examine these five stages, to aid a more comprehensive construction of the content and delivery of such a programme within the applied setting

    'You produce while I clean up', a strategy revealed by exoproteomics during Synechococcus-Roseobacter interactions.

    No full text
    [eng] Most of the energy that is introduced into the oceans by photosynthetic primary producers is in the form of organic matter that then sustains the rest of the food web, from micro to macro-organisms. However, it is the interactions between phototrophs and heterotrophs that are vital to maintaining the nutrient balance of marine microbiomes that ultimately feed these higher trophic levels. The primary produced organic matter is mostly remineralized by heterotrophic microorganisms but, because most of the oceanic dissolved organic matter is in the form of biopolymers, and microbial membrane transport systems operate with molecules <0.6 kDa, it must be hydrolyzed outside the cell before a microorganism can acquire it. As a simili of the marine microbiome, we analyzed, using state-of-the-art proteomics, the exoproteomes obtained from synthetic communities combining specific Roseobacter (Ruegeria pomeroyi DSS-3, Roseobacter denitrificans OCh114, and Dinoroseobacter shibae DFL-12) and Synechococcus strains (WH7803 and WH8102). This approach identified the repertoire of hydrolytic enzymes secreted by Roseobacter, opening up the black box of heterotrophic transformation/remineralization of biopolymers generated by marine phytoplankton. As well as highlighting interesting exoenzymes this strategy also allowed us to infer clues on the molecular basis of niche partitioning

    Functional distinctness in the exoproteomes of marine Synechococcus.

    No full text
    [eng] The exported protein fraction of an organism may reflect its life strategy and, ultimately, the way it is perceived by the outside world. Bioinformatic prediction of the exported pan-proteome of Prochlorococcus and Synechococcus lineages demonstrated that (i) this fraction of the encoded proteome had a much higher incidence of lineage-specific proteins than the cytosolic fraction (57% and 73% homologue incidence respectively) and (ii) exported proteins are largely uncharacterized to date (54%) compared with proteins from the cytosolic fraction (35%). This suggests that the genomic and functional diversity of these organisms lies largely in the diverse pool of novel functions these organisms export to/through their membranes playing a key role in community diversification, e.g. for niche partitioning or evading predation. Experimental exoproteome analysis of marine Synechococcus showed transport systems for inorganic nutrients, an interesting array of strain-specific exoproteins involved in mutualistic or hostile interactions (i.e. hemolysins, pilins, adhesins), and exoenzymes with a potential mixotrophic goal (i.e. exoproteases and chitinases). We also show how these organisms can remodel their exoproteome, i.e. by increasing the repertoire of interaction proteins when grown in the presence of a heterotroph or decrease exposure to prey when grown in the dark. Finally, our data indicate that heterotrophic bacteria can feed on the exoproteome of Synechococcus
    corecore