283 research outputs found

    Mixed adsorption and surface tension prediction of nonideal ternary surfactant systems

    Get PDF
    To deal with the mixed adsorption of nonideal ternary surfactant systems, the regular solution approximation for nonideal binary surfactant systems is extended and a pseudo-binary system treatment is also proposed. With both treatments, the compositions of the mixed monolayer and the solution concentrations required to produce given surface tensions can be predicted based only on the gamma-LogC curves of individual surfactants and the pair interaction parameters. Conversely, the surface tensions of solutions with different bulk compositions can be predicted by the surface tension equations for mixed surfactant systems. Two ternary systems: SDS/Hyamine 1622/AEO7, composed of homogeneous surfactants, and AES/DPCl/AEO9, composed of commercial surfactants, in the presence of excess NaCl, are examined for the applicability of the two treatments. The results show that, in general, the pseudo-binary system treatment gives better prediction than the extended regular solution approximation, and the applicability of the latter to typical anionic/cationic/nonionic nonideal ternary surfactant systems seems to depend on the combined interaction parameter, (ÎČans+ÎČcns)/2−ÎČacs/4 {\mathop {(\beta }\nolimits_{an}^s } + {\mathop \beta \nolimits_{cn}^s })/2 - {\mathop \beta \nolimits_{ac}^s }/4 : the more it deviates from zero, the larger the prediction difference. If (ÎČans+ÎČcns)/2−ÎČacs/4 {\mathop {(\beta }\nolimits_{an}^s } + {\mathop \beta \nolimits_{cn}^s })/2 - {\mathop \beta \nolimits_{ac}^s }/4 rarr0, good agreements between predicted and experimental results can be obtained and both treatments, though differently derived, are interrelated and tend to be equivalent

    Water Chemisorption and Reconstruction of the MgO Surface

    Full text link
    The observed reactivity of MgO with water is in apparent conflict with theoretical calculations which show that molecular dissociation does not occur on a perfect (001) surface. We have performed ab-initio total energy calculations which show that a chemisorption reaction involving a reconstruction to form a (111) hydroxyl surface is strongly preferred with Delta E = -90.2kJ/mol. We conclude that protonation stabilizes the otherwise unstable (111) surface and that this, not the bare (001), is the most stable surface of MgO under ambient conditions.Comment: RevTeX, 4 pages, 1 Encapsulated Postscript Figur

    The Adsorption of H2O on TiO2 and SnO2(110) Studied by First-Principles Calculations

    Full text link
    First-principles calculations based on density functional theory and the pseudopotential method have been used to investigate the energetics of H2_2O adsorption on the (110) surface of TiO2_2 and SnO2_2. Full relaxation of all atomic positions is performed on slab systems with periodic boundary conditions, and the cases of full and half coverage are studied. Both molecular and dissociative (H2_2O →\rightarrow OH−^- + H+^+) adsorption are treated, and allowance is made for relaxation of the adsorbed species to unsymmetrical configurations. It is found that for both TiO2_2 and SnO2_2 an unsymmetrical dissociated configuration is the most stable. The symmetrical molecularly adsorbed configuration is unstable with respect to lowering of symmetry, and is separated from the fully dissociated configuration by at most a very small energy barrier. The calculated dissociative adsorption energies for TiO2_2 and SnO2_2 are in reasonable agreement with the results of thermal desorption experiments. Calculated total and local electronic densities of states for dissociatively and molecularly adsorbed configurations are presented and their relation with experimental UPS spectra is discussed

    Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    Get PDF
    Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS) on the adsorption of the siderophores DFOB (cationic) and DFOD (neutral) and the ligand EDTA (anionic) onto goethite (α-FeOOH) at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III)-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition

    Projects of devotion : energy exploration and moral ambition in the cosmoeconomy of oil and gas in the Western United States

    Get PDF
    This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 715146. The authors also acknowledge the funding received to carry out this research from the Leverhulme Trust (ECF‐2013‐177) and the British Academy (EN150010).This article considers how people working in the oil and gas industry in Colorado perceive their involvement in energy exploration in relation to broader understandings of devotion, compassion, and outreach. I argue that although their energy projects may appear to merely echo companies’ formal promotional pitches, the oil field and corporate actors’ own moral ambitions reveal more-than-human cosmoeconomic visions of oil’s potentiality. This article thus demonstrates how multiple and diverging ethical registers intersect and inform the valuation of oil.Publisher PDFPeer reviewe
    • 

    corecore