45 research outputs found

    Development of Natural-Based Bone Cement for a Controlled Doxorubicin-Drug Release

    Get PDF
    Osteosarcoma (OS) accounts for 60% of all global bone cancer diagnoses. Intravenous administration of Doxorubicin Hydrochloride (DOXO) is the current form of OS treatment, however, systemic delivery has been linked to the onset of DOXO induced cardiomyopathy. Biomaterials including calcium phosphate cements (CPCs) and nanoparticles (NPs) have been tested as localized drug delivery scaffolds for OS cells. However, the tumor microenvironment is critical in cancer progression, with mesenchymal stem cells (MSCs) thought to promote OS metastasis and drug resistance. The extent of MSC assisted survival of OS cells in response to DOXO delivered by CPCs is unknown. In this study, we aimed at investigating the effect of DOXO release from a new formulation of calcium phosphate-based bone cement on the viability of OS cells cocultured with hMSC in vitro. NPs made of PLGA were loaded with DOXO and incorporated in the formulated bone cement to achieve local drug release. The inclusion of PLGA-DOXO NPs into CPCs was also proven to increase the levels of cytotoxicity of U2OS cells in mono- and coculture after 24 and 72 h. Our results demonstrate that a more effective localized DOXO delivery can be achieved via the use of CPCs loaded with PLGA-DOXO NPs compared to CPCs loaded with DOXO, by an observed reduction in metabolic activity of U2OS cells in indirect coculture with hMSCs. The presence of hMSCs offer a degree of DOXO resistance in U2OS cells cultured on PLGA-DOXO NP bone cements. The consideration of the tumor microenvironment via the indirect inclusion of hMSCs in this study can act as a starting point for future direct coculture and in vivo investigations

    Management of duodenal stump fistula after gastrectomy for malignant disease: A systematic review of the literature

    Get PDF
    Background: Duodenal stump fistula (DSF) remains one of the most serious complications following subtotal or total gastrectomy, as it endangers patient's life. DSF is related to high mortality (16-20%) and morbidity (75%) rates. DSF-related morbidity always leads to longer hospitalization times due to medical and surgical complications such as wound infections, intra-abdominal abscesses, intra-abdominal bleeding, acute pancreatitis, acute cholecystitis, severe malnutrition, fluids and electrolytes disorders, diffuse peritonitis, and pneumonia. Our systematic review aimed at improving our understanding of such surgical complication, focusing on nonsurgical and surgical DSF management in patients undergoing gastric resection for gastric cancer. Methods: We performed a systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) guidelines. PubMed/MEDLINE, EMBASE, Scopus, Cochrane Library and Web of Science databases were used to search all related literature. Results: The 20 included articles covered an approximately 40 years-study period (1979-2017), with a total 294 patient population. DSF diagnosis occurred between the fifth and tenth postoperative day. Main DSF-related complications were sepsis, abdominal abscess, wound infection, pneumonia, and intra-abdominal bleeding. DSF treatment was divided into four categories: conservative (101 cases), endoscopic (4 cases), percutaneous (82 cases), and surgical (157 cases). Length of hospitalization was 21-39 days, ranging from 1 to 1035 days. Healing time was 19-63 days, ranging from 1 to 1035 days. DSF-related mortality rate recorded 18.7%. Conclusions: DSF is a rare but potentially lethal complication after gastrectomy for gastric cancer. Early DSF diagnosis is crucial in reducing DSF-related morbidity and mortality. Conservative and/or endoscopic/percutaneous treatments is/are the first choice. However, if the patient clinical condition worsens, surgery becomes mandatory and duodenostomy appears to be the most effective surgical procedure

    Acute diverticulitis in immunocompromised patients: evidence from an international multicenter observational registry (Web-based International Register of Emergency Surgery and Trauma, Wires-T)

    Get PDF
    Background: Immunocompromised patients with acute diverticulitis are at increased risk of morbidity and mortality. The aim of this study was to compare clinical presentations, types of treatment, and outcomes between immunocompromised and immunocompetent patients with acute diverticulitis. Methods: We compared the data of patients with acute diverticulitis extracted from the Web-based International Registry of Emergency Surgery and Trauma (WIRES-T) from January 2018 to December 2021. First, two groups were identified: medical therapy (A) and surgical therapy (B). Each group was divided into three subgroups: nonimmunocompromised (grade 0), mildly to moderately (grade 1), and severely immunocompromised (grade 2). Results: Data from 482 patients were analyzed—229 patients (47.5%) [M:F = 1:1; median age: 60 (24–95) years] in group A and 253 patients (52.5%) [M:F = 1:1; median age: 71 (26–94) years] in group B. There was a significant difference between the two groups in grade distribution: 69.9% versus 38.3% for grade 0, 26.6% versus 51% for grade 1, and 3.5% versus 10.7% for grade 2 (p < 0.00001). In group A, severe sepsis (p = 0.027) was more common in higher grades of immunodeficiency. Patients with grade 2 needed longer hospitalization (p = 0.005). In group B, a similar condition was found in terms of severe sepsis (p = 0.002), quick Sequential Organ Failure Assessment score > 2 (p = 0.0002), and Mannheim Peritonitis Index (p = 0.010). A Hartmann’s procedure is mainly performed in grades 1–2 (p < 0.0001). Major complications increased significantly after a Hartmann’s procedure (p = 0.047). Mortality was higher in the immunocompromised patients (p = 0.002). Conclusions: Immunocompromised patients with acute diverticulitis present with a more severe clinical picture. When surgery is required, immunocompromised patients mainly undergo a Hartmann’s procedure. Postoperative morbidity and mortality are, however, higher in immunocompromised patients, who also require a longer hospital stay

    Poster display IV experimental and instrumentation

    Get PDF

    Visceral Leishmaniasis Associated with Hemophagocytic Lymphohistiocytosis

    No full text

    A cytokine-induced spheroid-based in vitro model for studying osteoarthritis pathogenesis

    Get PDF
    Given the lack of in vitro models faithfully reproducing the osteoarthritis (OA) disease on-set, this work aimed at manufacturing a reliable and predictive in vitro cytokine-based Articular Cartilage (AC) model to study OA progression. Cell spheroids of primary human fetal chondrocytes (FCs) and h-TERT mesenchymal stem cells differentiated chondrocytes (Y201-C) were analysed in terms of growth kinetics, cells proliferation and apoptosis over 10 days of culture, in healthy condition or in presence of cytokines (interleukin-1ß, −6 and TNF-α). Then, the spheroids were assembled into chondrospheres using a bottom-up strategy, to obtain an in vitro cytokines-induced OA model. The resulting chondrospheres were evaluated for gene expression and anabolic ECM proteins. Compared to the healthy environment, the simulated OA environment induced chondrocyte hyperproliferation and apoptotic pathway, decreased expression of anabolic ECM proteins, and diminished biosynthetic activity, resembling features of early-stage OA. These characteristics were observed for both Y201-C and HC at high and low concentrations of cytokines. Both HC and Y201-C demonstrated the suitability for the manufacturing of a scaffold-free in vitro OA model to facilitate studies into OA pathogenesis and therapeutic strategies. Our approach provides a faithful reproduction of early-stage osteoarthritis, demonstrating the ability of obtaining different disease severity by tuning the concentration of OA-related cytokines. Given the advantages in easy access and more reproducible performance, Y201-C may represent a more favourable source of chondrocytes for establishing more standardized protocols to obtain OA models

    Chapter 24: 3D-printed Soft Hydrogels for Cell Encapsulation

    No full text
    Recent advances in 3D-printing with a combination of cell biology with materials science allowed the manufacturing of cell-encapsulated biomaterials to be used in tissue engineering. The main component of these bioprinted constructs is a bioink that requires its characteristics to be considered and tuned throughout the selection process. In this chapter, the focus is on the physico-chemical and biological requirements of the hydrogels being considered as bioinks with a deep investigation on the different crosslinking mechanisms that allow a stable hydrogel to be created during the bioprinting process. This chapter also describes the current focus areas for cell-encapsulated bioprinting highlighting the recent progress and limitations of the bioprinting to date, with a critical perspective on the future outlook

    Insights into oxidative stress in bone tissue and novel challenges for biomaterials

    No full text
    none5siThe presence of Reactive Oxygen Species (ROS) in bone can influence resident cells behaviour as well as the extra-cellular matrix composition and the tissue architecture. Aging, in addition to excessive overloads, unbalanced diet, smoking, predisposing genetic factors, lead to an increase of ROS and, if it is accompanied with an inappropriate production of scavengers, promotes the generation of oxidative stress that encourages bone catabolism. Furthermore, bone injuries can be triggered by numerous events such as road and sports accidents or tumour resection. Although bone tissue possesses a well-known repair and regeneration capacity, these mechanisms are inefficient in repairing large size defects and bone grafts are often necessary. ROS play a fundamental role in response after the implant introduction and can influence its success. This review provides insights on the mechanisms of oxidative stress generated by an implant in vivo and suitable ways for its modulation. The local delivery of active molecules, such as polyphenols, enhanced bone biomaterial integration evidencing that the management of the oxidative stress is a target for the effectiveness of an implant. Polyphenols have been widely used in medicine for cardiovascular, neurodegenerative, bone disorders and cancer, thanks to their antioxidant and anti-inflammatory properties. In addition, the perspective of new smart biomaterials and molecular medicine for the oxidative stress modulation in a programmable way, by the use of ROS responsive materials or by the targeting of selective molecular pathways involved in ROS generation, will be analysed and discussed critically.noneCerqueni G.; Scalzone A.; Licini C.; Gentile P.; Mattioli-Belmonte M.Cerqueni, G.; Scalzone, A.; Licini, C.; Gentile, P.; Mattioli-Belmonte, M
    corecore