643 research outputs found

    Type Ia supernova Hubble diagram with near-infrared and optical observations

    Full text link
    We main goal of this paper is to test whether the NIR peak magnitudes of SNe Ia could be accurately estimated with only a single observation obtained close to maximum light, provided the time of B band maximum and the optical stretch parameter are known. We obtained multi-epoch UBVRI and single-epoch J and H photometric observations of 16 SNe Ia in the redshift range z=0.037-0.183, doubling the leverage of the current SN Ia NIR Hubble diagram and the number of SNe beyond redshift 0.04. This sample was analyzed together with 102 NIR and 458 optical light curves (LCs) of normal SNe Ia from the literature. The analysis of 45 well-sampled NIR LCs shows that a single template accurately describes them if its time axis is stretched with the optical stretch parameter. This allows us to estimate the NIR peak magnitudes even with one observation obtained within 10 days from B-band maximum. We find that the NIR Hubble residuals show weak correlation with DM_15 and E(B-V), and for the first time we report a possible dependence on the J_max-H_max color. The intrinsic NIR luminosity scatter of SNe Ia is estimated to be around 0.10 mag, which is smaller than what can be derived for a similarly heterogeneous sample at optical wavelengths. In conclusion, we find that SNe Ia are at least as good standard candles in the NIR as in the optical. We showed that it is feasible to extended the NIR SN Ia Hubble diagram to z=0.2 with very modest sampling of the NIR LCs, if complemented by well-sampled optical LCs. Our results suggest that the most efficient way to extend the NIR Hubble diagram to high redshift would be to obtain a single observation close to the NIR maximum. (abridged)Comment: 39 pages, 15 figures, accepted by A&

    Cooking influence on physico-chemical fruit characteristics of eggplant (Solanum melongena L.)

    Get PDF
    Physico-chemical traits of three eggplant genotypes ("Tunisina", "Buia" and "L 305") were evaluated before and after two cooking treatments (grilling and boiling). Different genotypes revealed different changes after cooking, with "Tunisina" showing a better retention of phytochemicals with respect to other two genotypes. The main physical phenomena were water loss during grilling, and dry matter loss after boiling. Chlorogenic acid, the main phenolic in eggplant, resulted higher in grilled samples, while delphinidin glycosides resulted more retained in boiled samples. Glycoalkaloids, thiols and biogenic amines were generally stable, while 5-hydroxy-methyl-furfural was found only in grilled samples. Interestingly, Folin-Ciocalteu index and free radical scavenging capacity, measured with three different assays, were generally increased after cooking, with a greater formation of antioxidant substances in grilled samples. NMR relaxation experiments clarified the hypothesis about the changes of eggplant compounds in terms of decomposition of larger molecules and production of small ones after cooking

    Very high-energy observations of the two high-frequency peaked BL Lac objects 1ES 1218+304 and H 1426+428

    Full text link
    We present results of very-high-energy gamma-ray observations (E > 160 GeV) of two high-frequency-peaked BL Lac (HBL) objects, 1ES 1218+304 and H 1426+428, with the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE). Both sources are very-high-energy gamma-ray emitters above 100 GeV, detected using ground-based Cherenkov telescopes. STACEE observations of 1ES 1218+304 and H 1426+428 did not produce detections; we present 99% CL flux upper limits for both sources, assuming spectral indices measured mostly at higher energies

    Correlated variability in the blazar 3C 454.3

    Full text link
    The blazar 3C 454.3 was revealed by the Fermi Gamma-ray Space Telescope to be in an exceptionally high flux state in July 2008. Accordingly, we performed a multi-wavelength monitoring campaign on this blazar using IR and optical observations from the SMARTS telescopes, optical, UV and X-ray data from the Swift satellite, and public-release gamma-ray data from Fermi. We find an excellent correlation between the IR, optical, UV and gamma-ray light curves, with a time lag of less than one day. The amplitude of the infrared variability is comparable to that in gamma-rays, and larger than at optical or UV wavelengths. The X-ray flux is not strongly correlated with either the gamma-rays or longer wavelength data. These variability characteristics find a natural explanation in the external Compton model, in which electrons with Lorentz factor gamma~10^(3-4) radiate synchrotron emission in the infrared-optical and also scatter accretion disk or emission line photons to gamma-ray energies, while much cooler electrons (gamma~10^(1-2)) produce X-rays by scattering synchrotron or other ambient photons.Comment: 7 pages, 3 figures, submitted to ApJ Letter

    Observations of the BL Lac Object 3C 66A with STACEE

    Full text link
    We present the analysis and results of recent high-energy gamma-ray observations of the BL Lac object 3C 66A conducted with the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE). During the 2003-2004 observing season, STACEE extensively observed 3C 66A as part of a multiwavelength campaign on the source. A total of 33.7 hours of data was taken on the source, plus an equivalent-duration background observation. After cleaning the data set a total of 16.3 hours of live time remained, and a net on-source excess of 1134 events was seen against a background of 231742 events. At a significance of 2.2 standard deviations this excess is insufficient to claim a detection of 3C 66A, but is used to establish flux upper limits for the source.Comment: Accepted for publication in the Astrophysical Journa

    PESSTO monitoring of SN 2012hn: further heterogeneity among faint type I supernovae

    Get PDF
    We present optical and infrared monitoring data of SN 2012hn collected by the Public ESO Spectroscopic Survey for Transient Objects (PESSTO). We show that SN 2012hn has a faint peak magnitude (MR ~ -15.7) and shows no hydrogen and no clear evidence for helium in its spectral evolution. Instead, we detect prominent Ca II lines at all epochs, which relates this transient to previously described 'Ca-rich' or 'gap' transients. However, the photospheric spectra (from -3 to +32 d with respect to peak) of SN 2012hn show a series of absorption lines which are unique, and a red continuum that is likely intrinsic rather than due to extinction. Lines of Ti II and Cr II are visible. This may be a temperature effect, which could also explain the red photospheric colour. A nebular spectrum at +150d shows prominent CaII, OI, CI and possibly MgI lines which appear similar in strength to those displayed by core-collapse SNe. To add to the puzzle, SN 2012hn is located at a projected distance of 6 kpc from an E/S0 host and is not close to any obvious starforming region. Overall SN 2012hn resembles a group of faint H-poor SNe that have been discovered recently and for which a convincing and consistent physical explanation is still missing. They all appear to explode preferentially in remote locations offset from a massive host galaxy with deep limits on any dwarf host galaxies, favouring old progenitor systems. SN 2012hn adds heterogeneity to this sample of objects. We discuss potential explosion channels including He-shell detonations and double detonations of white dwarfs as well as peculiar core-collapse SNe.Comment: 14 pages, 14 figures, accepted to MNRAS on 14/10/201
    • …
    corecore