52 research outputs found

    High-coverage methylation data of a gene model before and after DNA damage and homologous repair

    Get PDF
    Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles

    Allergen Micro-Bead Array for IgE Detection: A Feasibility Study Using Allergenic Molecules Tested on a Flexible Multiplex Flow Cytometric Immunoassay

    Get PDF
    Background: Allergies represent the most prevalent non infective diseases worldwide. Approaching IgE-mediated sensitizations improved much by adopting allergenic molecules instead of extracts, and by using the micro-technology for multiplex testing. Objective and Methods: To provide a proof-of-concept that a flow cytometric bead array is a feasible mean for the detection of specific IgE reactivity to allergenic molecules in a multiplex-like way. A flow cytometry Allergenic Moleculebased micro-bead Array system (ABA) was set by coupling allergenic molecules with commercially available micro-beads. Allergen specific polyclonal and monoclonal antibodies, as well as samples from 167 allergic patients, characterized by means of the ISAC microarray system, were used as means to show the feasibility of the ABA. Three hundred and thirty-six sera were tested for 1 or more of the 16 selected allergens, for a total number of 1,519 tests on each of the two systems. Results: Successful coupling was initially verified by detecting the binding of rabbit polyclonal IgG, mouse monoclonal, and pooled human IgE toward three allergens, namely nDer s 1, nPen m 1, and nPru p 3. The ABA assay showed to detect IgE t

    IgE Recognition Patterns of Profilin, PR-10, and Tropomyosin Panallergens Tested in 3,113 Allergic Patients by Allergen Microarray-Based Technology

    Get PDF
    BACKGROUND: IgE recognition of panallergens having highly conserved sequence regions, structure, and function and shared by inhalant and food allergen sources is often observed. METHODS: We evaluated the IgE recognition profile of profilins (Bet v 2, Cyn d 12, Hel a 2, Hev b 8, Mer a 1, Ole e 2, Par j 3, Phl p 12, Pho d 2), PR-10 proteins (Aln g 1, Api g 1, Bet v 1.0101, Bet v 1.0401, Cor a 1, Dau c 1 and Mal d 1.0108) and tropomyosins (Ani s 3, Der p 10, Hel as 1, Pen i 1, Pen m 1, Per a 7) using the Immuno-Solid phase Allergen Chip (ISAC) microarray system. The three panallergen groups were well represented among the allergenic molecules immobilized on the ISAC. Moreover, they are distributed in several taxonomical allergenic sources, either close or distant, and have a route of exposure being either inhalation or ingestion. RESULTS: 3,113 individuals (49.9% female) were selected on the basis of their reactivity to profilins, PR-10 or tropomyosins. 1,521 (48.8%) patients were reactive to profilins (77.6% Mer a 1 IgE(+)), 1,420 (45.6%) to PR-10 (92.5% Bet v 1 IgE(+)) and 632 (20.3%) to tropomyosins (68% Der p 10 IgE(+)). A significant direct relationship between different representative molecules within each group of panallergens was found. 2,688 patients (86.4%) recognized only one out of the three distinct groups of molecules as confirmed also by hierarchical clustering analysis. CONCLUSIONS: Unless exposed to most of the allergens in the same or related allergenic sources, a preferential IgE response to distinct panallergens has been recorded. Allergen microarray IgE testing increases our knowledge of the IgE immune response and related epidemiological features within and between homologous molecules better describing the patients' immunological phenotypes

    IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper

    Get PDF
    Currently, testing for immunoglobulin E (IgE) sensitization is the cornerstone of diagnostic evaluation in suspected allergic conditions. This review provides a thorough and updated critical appraisal of the most frequently used diagnostic tests, both in vivo and in vitro. It discusses skin tests, challenges, and serological and cellular in vitro tests, and provides an overview of indications, advantages and disadvantages of each in conditions such as respiratory, food, venom, drug, and occupational allergy. Skin prick testing remains the first line approach in most instances; the added value of serum specific IgE to whole allergen extracts or components, as well as the role of basophil activation tests, is evaluated. Unproven, non-validated, diagnostic tests are also discussed. Throughout the review, the reader must bear in mind the relevance of differentiating between sensitization and allergy; the latter entails not only allergic sensitization, but also clinically relevant symptoms triggered by the culprit allergen

    Bi-allelic variants in CELSR3 are implicated in central nervous system and urinary tract anomalies

    Get PDF
    CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.</p

    Bi-allelic variants in CELSR3 are implicated in central nervous system and urinary tract anomalies

    Get PDF
    CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.</p

    Etiological involvement of KCND1 variants in an X-linked neurodevelopmental disorder with variable expressivity

    Get PDF
    Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary β subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.</p

    Original Article

    Get PDF
    The pancreas taken from the frog (Rana nigromaculata) was fixed in 1% OsO_4 and sliced into ultrathin sections for electron microscopic studies. The following observations were made: 1. A great \u27number of minute granules found in the cytoplasm of a pancreatic cell were called the microsomes, which were divided into two types, the C-microsome and S-microsome. 2. Electron microsopic studies of the ergastoplasm showed that it is composed of the microsome granules and A-substance. The microsomes were seen embedded in the A-substance which was either filamentous or membranous. The membranous structure, which was called the Am-membrane, was seen to form a sac, with a cavity of varying sizes, or to form a lamella. 3. The Am-membrane has close similarity to α-cytomembrane of Sjostrand, except that the latter is rough-surfaced. It was deduced that the Am-membrane, which is smooth-surfaced, might turn into the rough-surfaced α-cytomembrane. 4. There was the Golgi apparatus in the supranuclear region of a pancreatic cell. It consisted of the Golgi membrane, Golgi vacuole and. Golgi vesicle. 5. The mitochondria of a pancreatic cell appeared like long filaments, and some of them were seen to ramify. 6. The membrane of mitochondria, i. e. the limiting membrane, consisted of the Ammembrane. The mitochondria contained a lot of A-substances, as well as the C-microsomes and S-microsomes. When the mitochondria came into being, there appeared inside them chains of granules, which appeared like strips of beads, as the outgrowths of the A-substance and the microsome granules attached to the Am-membrane. They are the so-called cristae mitochondriales. 7. The secretory granules originate in the microsomes. They came into being when the microsomes gradually thickened and grew in size as various substances became adhered to them. Some of the secretory granules were covered with a membrane and appeared like what they have called the intracisternal granule of Palade.It seemed that this was a phenomenon attendant upon the dissolution and liqutefaction of the secretory granule. 8. Comparative studies were made of the ergastoplasm of the pancreatic cells from the frogs in hibernation, the frogs artificially hungered, the frogs which were given food after a certain period of fasting, the frogs to which pilocarpine was given subcutaneously, and the very young, immature frogs. The studies revealed that the ergastoplasm of the pancreatic cells greatly varied in form with the difference in nutritive condition and with different developmental stages of the cell. The change in form and structure occured as a result of transformation of the microsomes and A-substance. The ergastoplasm, even after it has come into being, might easily be inactivated if nutrition is defective. The ergastoplasm is concerned in the secretory mechanism, which is different from the secretory phenomenon of the secretory granules. It would seem that structurally the mitochondria have no direct relation to this mechanism

    Etiological involvement of KCND1 variants in an X-linked neurodevelopmental disorder with variable expressivity

    Get PDF
    Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary β subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.</p
    corecore