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Bi-allelic variants in CELSR3 are
implicated in central nervous system and
urinary tract anomalies
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CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven
independent families with bi-allelic variants in CELSR3. Affected individuals presented with an
overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12),
combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12)
and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of
the identified variants to be implicated in penetrance and phenotype expression. CELSR3
immunolocalization in human embryonic urinary tract and transient suppression and rescue
experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of
CELSR3 in CNS and urinary tract formation.

Co-occurrence of congenital anatomical and functional anomalies of the
central nervous system (CNS) and congenital anomalies of the kidneys and
urinary tract (CAKUT) have been previously reported, e.g. Galloway-
Mowat syndrome [MIM 251300]1; CAKUTHED [MIM 617641]2; or
NECRC [MIM 619522]3. The cadherin EGF LAG seven-pass G-type
receptors (CELSRs) are as a subgroup of adhesion G protein-coupled
receptors (aGPCRs) involved in many biological processes such as regula-
tion of planar cell polarity (PCP) during embryonic development, neuronal
and endocrine cell differentiation, vessel formation and axon guidance4,5. In

the context of kidney development and pathophysiology, aGPCRs and in
particular Celsr1 are known to play an important role in ureteric bud
branching6. All CELSR familymembersCELSR1-3 have large ecto-domains
for homophilic interactions followed by seven transmembrane segments
and a cytoplasmic domain4. Expression studies of all three CELSR paralogs
in xenopus andmice showdistinct co-expression in the embryonicCNSand
the pronephric system, a vertebrate kidney precursor6–8.Celsr3mutantmice
show severe thalamocortical disconnection, decreased rubrospinal axons,
corticospinal axons, spinalmotoneurons and neuromuscular junctions, due
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to failure in axon guidance or outgrowth9–11. Rare monoallelic variants in
human CELSR3 have been associated with neural tube defects (NTDs)4,12,
febrile seizures13 and Tourette disorder14.

Previously, we detected compound heterozygous variant alleles in
CELSR3 in an affected female with CAKUT and tethered cord syndrome15.
Here, we report a total of twelve individuals with rare or novel bi-allelic
variants in CELSR3. The affected individuals share an overlapping pheno-
typic spectrum comprising CNS anomalies, co-occurring CNS anomalies
combined with CAKUT and CAKUT only. Computational simulation of
the 3D protein structure suggests the position of the identified variants to be
implicated in phenotype expression. Immuno-detection of CELSR3 in
human embryonic urinary tract and transient suppression and rescue
experiments of Celsr3 in fluorescent zebrafish reporter lines suggest an
embryonic involvement in CNS and urinary tract formation.

Results
Individuals with bi-allelic variants in CELSR3 present within a
phenotypic spectrum
Sixof the twelvedescribed individuals presentedwithhomozygousmissense
and five with compound heterozygous missense CELSR3 variant alleles
(Table 1). Individual 5: II-2 carried a heterozygous missense variant and an
in-frame-deletion in trans. Seven of twelve individuals presented with a
predominant CNS phenotype (1: II-1, 2: II-1, 2: II-2, 3: II-1, 4: II-3, 5: II-2, 6:
II-1), threepresentedwith a combinedCNSandCAKUTphenotype (7: II-1,
8: II-1, 9: II-1) and two presented with CAKUT only (10: II-1, 11: II-1)
(Table 1, Fig. 1).

Individuals with predominant CNS or combined CNS and CAKUT
phenotypes presented with intellectual disability and/or developmental
delay (ID / DD), hypotonia, seizures, brain malformations, NTDs, macro-
or microcephaly (occipitofrontal circumference ±2 SD). The CAKUT
spectrum in individuals with combinedCNS and CAKUT or CAKUT only
comprised duplicated collecting system, ectopic kidney, multi-cystic dys-
plastic kidney, vesico-ureteric reflux, hydronephrosis, obstructive uro-
pathies or irregular bladder wall. Detailed phenotype information can be
found in Table 1 and Supplement B.

In silico analysis predicts intolerance of CELSR3 variants
In individuals with a predominant CNS phenotype, eight out of ten variants
were characterized as presumably damaging by at least two in silico pre-
diction tools. One of these ten variants was predicted to be presumably
damaging by all three prediction tools. All these variants affect residues
highly conserved among species (Fig. 1a) and are annotated with a CADD
score above 22, except for c.8480C>A (CADD score 17.8) (Table 1).

In individuals with CNS and CAKUT, and CAKUT only phenotype,
five out of six identified variants were characterized as presumably dama-
ging by at least two in silico prediction tools, four of these six variants were
predicted to be presumably damaging by all three prediction tools. All these
variants are annotated with a CADD score above 22 (Table 1) and affect
highly conserved residues, except for c.3142C>T (Fig. 1b).

Structuralmodeling revealsphenotypeassociateddistributionof
CELSR3 protein variants
We used PhosphositePlus16 and AlphaFold17 to create a model of the 3312
amino acid (aa) human CELSR3 protein using a ´divide-and-conquer´
strategy. The N-terminus of the protein comprises 307 aa (1–307) and the
C-terminus contains 522 aa (2790–3312) for which no structural modeling
was possible as no suitable homology template exists. CELSR3 contains
seven membrane spanning helices (aa 2541–2774), which are part of the
modeled section of this protein. The location of variants was mapped onto
the model (Fig. 2). According to this modeling most modeled variants are
predicted topotentially destabilize the respective regionor affect thepossible
interaction surface due to changes in polarity or structure (Supplementary
Table 1).

Only three of the ten variants found in individuals with a predominant
CNSphenotype localizeN-terminal in distance to themembrane associated

domains.Whereas seven out of ten possibly CNS associated variants cluster
within the perimembraneous domains and in the intracellular C-terminal
domain (Fig. 2). Remarkably, the p.Ile2409del variant introduces a register
shift into the side chain up-down sequence of a beta strand, potentially
leading to a larger structural disturbance in this area. The p.Gly2667Ser
variant is in an extracellular loop of the transmembrane domain and the
variation to a polar serine can change the interaction surface of this region.

In comparison, all variants identified in individuals with CAKUT
residewithin extracellularN-terminal domains, including individuals 10: II-
1 and 11: II-1 with variants in similar positions in one of the Cadherin
domains (p.Arg1048Trp and p.Glu1034Gln) and similar CAKUT only
phenotype (Table 1; Fig. 2). Two of these six possibly CAKUT associated
variants cluster close to theGAIN-GPSmotif: p.Val2320Ala, p.Glu2501Lys.
The variant p.Val2320Ala might induce conformational changes of that
loop in the GAIN domain and p.Glu2501Lys could significantly affect
interactions by changes in polarity. Due to the absence of available research
data, it was not possible to structurally model the cytoplasmic domains of
CELSR3 (>500 aa). Interestingly, three of the in total 16 variants in twelve
individuals identified in this study are located in this comparably small
cytoplasmic area of the protein, suggesting this unresearched region to be
important for protein function as well (Fig. 2).

Detection of CELSR3 in the human embryonic metanephric kid-
ney and urinary tract
CELSR3 was immuno-detected in different structures of the human
embryonic metanephros, the precursor of the human kidney (Fig. 3, Sup-
plementary Fig. 2). Similar patterns of CELSR3 were noted in metanephric
kidneys at ten and twelve weeks of gestation. CELSR3 was detected in
medullary collecting ducts and in ureteric bud branch stalks in the cortex of
the developing organ. The protein was further detected in the Bowman
capsule of immature glomeruli and there was weak immunostaining in
proximal tubules. At the same stage, uncondensed metanephric mesench-
yme in the outer cortex immuno-stained for CELSR3 as well (Fig. 3). In
sections of a seven-week human embryo, CELSR3was immuno-detected in
epithelia of both the urogenital sinus tube, the precursor of the bladder
urothelium, and also epithelia of the hindgut (Supplementary Fig. 2). The
seven-week metanephric kidney contains a central ureteric stalk, with its
branch tips capped by condensing metanephric mesenchyme, containing
the nephron precursor cells. Neither of these showed a significant signal for
CELSR3. But uncondensed metanephric mesenchyme in the seven-week
metanephros stained for CELSR3. In addition, large (proximal) tubules in
the adjacent mesonephros immuno-stained for CELSR3 as well (Supple-
mentary Fig. 2).

Transient suppression of CELSR3 ortholog Celsr3 in zebrafish
leads to anomalies in the developing CNS and urinary system
The similarity between the human CELSR3 protein and the zebrafish (zf)
orthologCelsr3 regarding all four described zf transcripts (celsr3-201, celsr3-
202, celsr3-203 and celsr3-204) is ~78% (2316/2959 aa) (SerialCloner 2.6.1
software). PCR amplification of the 5’ end of celsr3 from zf cDNA revealed a
larger transcribed region of at least an additional 2,138 base pairs (bp)
compared to that previously described celsr3-204.Morpholino®knockdown
(MO-KD) with the translational-blocking MO (TB-MO) targeted to the
start codon 195 bp upstream of zf mRNA-transcript celsr3-204 (TB-MO-
204) as well as the splice-blocking MO (SB-MO-e6i6) both showed a
matching phenotype during the first five days post fertilization (dpf) (Fig. 4,
Supplementary Fig. 3). We defined the phenotype as a warped tail partly in
combination with a disruption of neuronal or musculoskeletal tissue at the
caudal end from two dpf onwards. This phenotype was significantly more
frequent in SB-MO-e6i6-treated zf larvae (zfl) (42%) and TB-MO-204-
treated zfl (83%) compared to Control-MO-treated zfl (2%, two-way
ANOVA, p as indicated) (Fig. 4a, b, Supplementary Fig. 3). The co-injection
of TB-MO-204 with human wild-type (wt) CELSR3 polyAmRNA reduced
this phenotype to 23% of zfl. Hence in most TB-MO-204-treated zfl the
phenotype could be rescued with human wt mRNA of CELSR3.
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Furthermore, we could show that there is no significant difference between
rescued and Control-MO-treated zfl.

In a parallel approach, we injected aCRISPR-Cas9mix into zf embryos
with six sgRNAs targeting celsr3. A comparable phenotype to Celsr3 MO-
KD zfl could be replicated in these celsr3 F0 CRISPR knockout (KO) zfl, as

well as a significant increase of affected zfl (63%) compared to scrambled
controls (2%) (Fig. 4a, b). Of note, no significant differences in survival rates
among MO-KD, rescue and control groups were observed within the first
five dpf. However, celsr3 F0 CRISPR KO zfl presented with a lower survival
rate compared to scrambled controls (Fig. 4d). Using transgenic Tg(-
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Fig. 1 | Families with bi-allelic variants in CELSR3 and clinical images.
a Pedigrees of six families (1–6) with a predominant central nervous system (CNS)
phenotype. b Pedigrees of three families (7–9) with combined CNS phenotype and
congenital anomalies of the kidneys and urinary tract (CAKUT), and two families
(10, 11) with CAKUT only. The evolutionary conservation of the affected sequence
(bp) was estimated with the ConSurf server from variable (green) to conserved
(purple). Asterisks: Position of the respective variants. The arrows indicate

probands. Filled shapes should reflect affected status. c Brain magnetic resonance
image (MRI) of 4: II-3 showing pachygyria. d Photograph of 6: II-1 showing a
congenital hairymelanocytic nevuswith a diameter of 0.1 to 0.15meter at the level of
the lower lumbal spine. Radiologic imaging of the spine was not performed here.
e Photograph of 8: II-1 showing macrocephaly, high and prominent forehead and
very small and low-set ears. f MRI of 9: II-1. Arrow: Chiari malformation type 1
(cerebellar tonsillar herniation).
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3.1ngn1:GFP) zfl at three dpf we visualized the disrupted arrangement of
proliferating neuronal progenitor cells and decreased axonal outgrowth in
Celsr3 KD or KO zfl (Fig. 4c). We further evaluated the structural devel-
opment of the pronephros in transgenicTg(wt1b:EGFP) zfl at three dpf (Fig.
4e, Supplementary Fig. 3). Here, TB-MO-treated zfl showed a significant
dilatation of the glomerulus and a reduced size of the neck segments,
compared to controls. This effect was almost completely rescued after co-
injection of TB-MO-204 together with human wt CELSR3 polyA mRNA
(Fig. 4f).

Discussion
In this study, we report twelve individuals from eleven independent families
with rare or novel bi-allelic variants in CELSR3 (Fig. 1, Table 1), most of
them are missense variant alleles by conceptual translation.

Seven of ten variants of individuals with a predominant CNS pheno-
type reside in the intracellular or the peri-membranous protein region,
including theGAINandGPSdomain (Fig. 2). The highly conservedGPCR-
Autoproteolysis Inducing (GAIN) domain is structurally and functionally
linked to the GPCR-Proteolysis Site (GPS) by mediating a chemical envir-
onment in the GPS necessary for autoproteolysis18. The intracellular

C-terminal fragment (CTF) in GPCRs was found important for receptor
density on the cell surface19, PCP20, and neural tube development12,21,22.
Structural variation in the intracellular CTF of CELSR3 might impair
receptor signaling predominantly leading to a CNS phenotype. Interest-
ingly, all variants of individuals with a combined CNS and CAKUT or
CAKUT only phenotype distribute within the extracellular domains. The
extracellular cadherin repeats of CELSRs have adhesive properties and
provide a likely structural mechanism for calcium-regulated interaction4,5.
Our computed model of the human CELSR3 protein predicted potential
structural and functional disturbances as a potential consequence of these
respective extracellular or transmembrane variations (Fig. 2 and Supple-
mentary Table 1). While these domains are structurally well characterized
and allow quite precise calculation, intracellular variants are limited in
structural interpretation due to sparse common information on the three-
dimensional structure of the CTF. As indicated in the introduction, (rare)
monoallelic variants inCELSR3havebeendescribed tobe involved inneural
tube defects (NTDs)4,12, febrile seizures13 and Tourette disorder14. However,
the respective studies do not provide functional evidence to support this
associations beyond doubt. Based on all available data, the protein was
modeled and the effects of the identified variants were hypothetically
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Fig. 2 | Structural modeling of CELSR3 and mapping of the variants. Structural
modeling of CELSR3 and the respective variants according to the amino acid (aa)
position. Left panel: 3D protein domain view and variant annotation using
AlphaFold and PyMOL. Middle panel: Linearized aa view of the protein domains.
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7TM Seven-transmembrane.

https://doi.org/10.1038/s41525-024-00398-9 Article

npj Genomic Medicine |            (2024) 9:18 5



outlined, implying certain limitations. Nevertheless, a limiting factor for the
disease-gene relationship is that uncertainty remains about the specific
function of the respective variants in the disease formation. Here identifi-
cation of a larger cohort of affected biallelic variant carriers for further
assessment iswarranted. Furthermore, explorationof the respective variants
in functional studies and cellular models are a direction for future research.

Previous studies indicated expression of Celsr3 protein in the CNS and
disrupted axonal guidance in the forebrain of Celsr3 conditional KO
mice8–10. This led to a variety of developmental phenotypes of the CNS in
these mice, which is in line with the phenotypic variability observed in our
patients. While expression of Celsr3 in the developing CNS of mice was
described previously8–10, we extended the expression profile of CELSR3/
Celsr3 to the embryonic and fetal bladderprecursor tissuesusinghumanand
mouse transcriptome data (GEO accession ID: GSE190641; Supplementary
Fig. 1)23. These findings suggest a conserved role ofCELSR3/Celsr3 not only
during CNS but also during urinary tract development in vertebrates
(Supplementary Fig. 1). Furthermore, we immuno-detected CELSR3 in
different embryonic structures of the developing human metanephric kid-
ney and the urogenital sinus epithelium of the nascent bladder (Fig. 3 and
Supplementary Fig. 2). The postulate that CELSR3 has critical roles in the
growth and differentiation of these diverse cell types is consistent with the
range of malformations described here (i.e., dysplastic and fused collecting
systems).

In order to investigate not only expression but also the role of CELSR3
in development, we chose the zfl as a model organism. The similarity of the
human CELSR3 protein compared to the zf ortholog Celsr3 is notably high
with 78% (2316/2959 aa). The PCP core component pathway ismediated in

part by the Celsr1-3 subfamily, conserved through mice and zf24. Relative
expression data in zfl from one hour post fertilization (hpf) to 21 dpf
indicated the highest expression of celsr3 at three dpf24. Therefore, we
examined the functionofCelsr3during early development in aMO-KDand
F0 CRISPR-Cas9 KO zf model. The zf transcript celsr3-204 is described to
begin protein synthesis with glutamate (GAA), even though protein
synthesis is initiated commonly with AUGmethionine codons25. The AUG
translational start site of transcript celsr3-204 that we detected 195 bp
upstream of the previously described beginning of exon 1 shows a high
similarity to the human 5‘ translational start site of CELSR3 and a strong
Kozak consensus (Kozak: ACCAUGGCG; celsr3-204 minus 195 bp:
AGCAUGGAG). Therefore, we designed a TB-MO targeting this probable
AUG translational start site of transcript celsr3-204 (TB-MO-204).

Transient suppression of celsr3 transcripts in fluorescent zfl reporter
lines demonstrates the function of Celsr3 during early embryonic CNS and
urinary tract development (Fig. 4, Supplementary Fig. 3). Previously, the
expression of celsr3 has been described in primary neural clusters of the
brain and the spinal cord in zfl starting at twelve hpf26.We characterized the
effect of Celsr3 MO-KD and celsr3 F0 CRISPR KO on neurogenesis using
the fluorescent reporter line Tg(-3.1ngn1:GFP) (Fig. 4c). The structural
irregularities at the caudal end and disrupted neuronal migration in zfl
morphants possibly resemble the neuronal anomalies described in indivi-
duals 2: II-2, 4: II-3, 6: II-1, 7: II-1, 8: II-1 and 9: II-1 (Table 1). Since five of
the here described individuals presented with CAKUT, we chose the
transgenicTg(wt1b:EGFP) zf line as a vertebratemodel systemto analyze the
effect of Celsr3 MO-KD on the early urinary tract development27. These zfl
showed structural anomalies of the developing pronephros in Celsr3 zf

Fig. 3 | CELSR3 immunostaining in the human
embryonic metanephric kidney at ten weeks
gestation. All frames depict a ten-week gestation
kidney with nuclei counterstained (blue) with
hematoxylin. a Low power view of midsagittal sec-
tion with primary antibody omitted. The nephro-
genic cortex is uppermost and the medulla is in the
low part of the image. Note the absence of brown
color. b Adjacent section to that depicted in a. but
immuno-stained for CELSR3. Note the positive
signal (brown) in diverse structures. Boxed areas are
detailed in c-f. c CELSR3 was detected in branching
medullary collecting ducts (cd). d The nephrogenic
cortex contains immature structures. CELSR3 was
detected in the ureteric bud branch stalk (ubs)which
is flanked by nephron precursors called S-shape
bodies (ssb). The metanephric mesenchyme (mm)
stained weakly for CELSR3. e Another view of the
nephrogenic cortex showing the ureteric bud branch
ampullary tip (uba). These epithelia were weakly
positive for CELSR3. Lower in the same image is an
immature glomerulus with prominent CELSR3
immunostaining in the Bowman capsule, or parietal
epithelia (arrows in the boxed enlargement). f The
Bowman capsule of a more mature glomerulus has
downregulated CELSR3 (arrows in boxed enlarge-
ment), and there is weak immunostaining in a
nearby proximal tubule (pt). Bars are 2 mm in
frames a and b, and 200 µm in frames c–f.
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morphants at three dpf (Fig. 4e, f, Supplementary Fig. 3). We classified the
disproportionally enlarged glomerulus as a marker for disturbed develop-
ment of the pronephros and the urinary tract, comparable to the kidney
anomalies including hydronephrosis, obstructive uropathies and other
CAKUT phenotypes observed in this study (Table 1).

In conclusion, the presented human genomic and immunohisto-
chemical results, computational simulation of protein structure, and func-
tional studies in zfl, collectively support thehypothesis that bi-allelic variants
in CELSR3 are involved in a probable genetic disease mainly affecting the
CNS and urinary tract.
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Methods
Ethics declaration
This study fulfilled the requirements of the Declaration of Helsinki and was
approved by the Ethics Committee of theMedical Faculty of the University
of Bonn (Lfd.Nr.031/19). Consent was obtained for all families including
photographs if published, according to the respective research protocol of
each institution. Human embryonic and fetal samples were surgically
extracted from terminated pregnancies after informed consent and ethics
approval. Mouse embryonic tissues have been documented and their usage
reported to the local authorities (RegierungspräsidiumDarmstadt). Human
embryonic tissues were collected after maternal consent and with ethical
approval of theNorth East - Newcastle &North Tyneside 1 Research Ethics
Committee (REC18/NE/0290, https://www.hdbr.org). Animal husbandry
and experimental setups were in accordance with European Legislation for
the Protection of Animals used for Scientific Purposes (Directive 2010/62/
EU). National law exempts all zebrafish experiments performed in larval
stages up to five dpf before feeding from ethical approval.

Family 1: Written informed consent was obtained from the parents or
legal guardians of the studyparticipants after approval from the institutional
reviewboard (IRB) at theparticipating institutions.Approval EK302-16was
granted by the ethics committee of the Medical Faculty of the RWTH
Aachen (Universitätsklinikum Aachen, Germany).

Family 2: All individuals or their families have signed written consent
including clinical images, approved by the Ethics Committee of theMedical
University of Innsbruck. Ethics application number UN4501.

Family 3: All individuals or their families have signed written consent.
The study was approved by the IRB protocol 12-009346.

Family 4: All individuals or their families have signed written consent.
The individual has been enrolled in a study for sequencing analysis after IRB
approval at Policlinico S. Orsola-Malpighi (Bologna, Italy). IRB protocol
3206/2016.

Family 5: All individuals or their families have signed written consent
through the Telethon Undiagnosed Disease Program (Naples, Italy).

Family 6:Written consentwas obtained for publication of anonymized
medical data which were obtained in a diagnostic setting. The affected
individual was investigated by their referring physicians and all genetic
analyses were performed in a diagnostic setting. Legal guardians of the
affected individual gave informed consent for genomic investigations and
publication of their anonymized data. For the ErasmusMC, use of genome-
wide investigations in a diagnostic setting was IRB approved. IRB protocol
METC-2012-387.

Family 7: All individuals or their families have signed written consent.
This study was approved by Baylor College of Medicine (Houston, USA).
IRB research Protocol H-29697.

Family 8: All individuals or their families have signed written consent
through the Telethon Undiagnosed Disease Program (Naples, Italy). This
studywas approved under protocol numberUDP15001. The authors affirm
that human research participants provided informed consent for publica-
tion of the image in Fig. 1e.

Family 9: All individuals or their families have signed written consent.
Agreement to perform Exome Sequencing was obtained by GeneDx (Gai-
thersburg, USA). Informed consent for publication was obtained from the
family by the clinicians and standard permission form to photograph for
academic and research purpose was signed.

Family 10: All individuals or their families have signedwritten consent.
Approval for human subjects’ research was obtained from the IRB of the
University ofMichigan and BostonChildren’sHospital (Boston, USA). IRB
protocol P00006200.

Family 11: All individuals or their families have signedwritten consent.
Approval for human subjects’ research was obtained from the IRB of the
University ofMichigan and BostonChildren’sHospital (Boston, USA). IRB
protocol P00006200.

Supplementary Family 1: The individual has given written permission
for the publication of the data. InDenmark this is not considered a research
project and participation is exempt from IRB and ethics approval.

Supplementary Family 2: All individuals or their families have signed
written consent. This study was approved by the Columbia University IRB.
IRB protocol AAAO6702.

Supplementary Family 3: All individuals or their families have signed
written consent including diagnostic and publication.

Variant identification and classification
We describe twelve individuals with bi-allelic variants in CELSR3.
Furthermore, we describe three families with bi-allelic CELSR3 var-
iants of uncertain significance in the supplemental material. All
individuals were ascertained through clinical exome sequencing (ES)
and GeneMatcher28. Informed consent was obtained for all cases with
additional permission to publish clinical images, if included. Race and
ethnicity were self-reported or collected from databases. All sequen-
cing methods, molecular findings and clinical descriptions are stated
in Supplement A and B.

All variant alleles refer to the sequence of ENST00000164024.5
(Ensembl release 107, reference sequence NM_001407.3) and were vali-
dated with Mutalyzer 2.0.3529,30. Due to the size of the gene, we only con-
sidered variants not reported homozygous in gnomAD v3.1 and with a
gnomAD v3.1 minor allele frequency (MAF) ≤ 0.0001 in order to avoid bi-
allelic cases by chance. All variants, and segregation when parents available,
were validated by Sanger sequencing. Additional, less likely variants of

Fig. 4 | Transient suppression of Celsr3 in zebrafish larvae. Phenotypic evaluation
of the different zebrafish larvae (zfl) groups: Zfl injected with Control-Morpholino
(Control-MO), zfl injected withMOblocking celsr3 splice site exon 6 – intron 6 (SB-
MO-e6i6), zfl injected withMOblocking transcript celsr3-204 (TB-MO-204), zfl co-
injected with TB-MO-204 and human wild-type (wt) CELSR3 polyA mRNA, zfl
injected with scrambled (scrl) CRISPR control and celsr3 F0 CRISPR knockout
(KO) mixes. a Representative brightfield microscopy of laterally mounted zfl at two
days post fertilization (dpf) treated with 1-phenyl 2-thiourea (PTU). Asterisks:
Example caudal end disruption. Arrowhead: Example warped tail. Scale bar
1000 µm. b Percentage of affected zfl in brightfield microscopy. TB-MO-204
injected zfl and celsr3 F0 CRISPR KO zfl show highly significant affection of a
warped tail and/or caudal end disruption. In most zfl exposed to TB-MO-204 the
phenotype could be rescued with human wt polyA CELSR3mRNA. Number (n) of
zfl for each injection group: Control-MO (n = 157), SB-MO-e6i6 (n = 278), TB-
MO-204 (n = 223), TB-MO-204+ human wt RNA (n = 221), scrl CRISPR control
(n = 416) and celsr3 F0 CRISPRKO (n = 440). Number of independent experiments
N = 3 for both MO and CRISPR. c Representative laterally mounted Tg(-
3.1ngn1:GFP) zfl at three dpf treated with PTU and imaged from lateral to visualize
the effect of Celsr3MOknockdown (MO-KD) or F0 celsr3KOonneurogenesis. The

structural irregularities at the caudal end of theMO-KDor F0 celsr3KO zfl correlate
with a disruption of the neuronal arrangement (white asterisks). Scale bar 1000 µm.
d Kaplan–Meier plot showing a comparable survival rate for each respective
injection group. Number (n) of zf embryos for each injection group: Control-MO
(n = 203), SB-MO-e6i6 (n = 367), TB-MO-204 (n = 290), TB-MO-204+ human wt
RNA (n = 272), scrl CRISPR control (n = 469) and celsr3 F0 CRISPR KO (n = 611).
Number of independent experimentsN = 3 each. eRepresentative dorsallymounted
Tg(wt1b:EGFP) zfl at three dpf treatedwith PTUand imaged fromdorsal to visualize
the effect of Celsr3 MO-KD on the development of the pronephros. White asterisk:
Example enlarged glomerulus. G: Glomerulus. Ns1: Right neck segment. Ns2: Left
neck segment. Scale bar 100 µm. f Box plot showing the size of the glomerulus in
relation to the neck segments (G/((Ns1+Ns2)/2)) calculated for each
Tg(wt1b:EGFP) zfl at three dpf.MO-injected zfl show a highly significant increase of
the glomerular diameter in comparison to the length of the neck segments. This
effect was almost completely rescued when TB-MO-204 was co-injected together
with humanCELSR3wt polyAmRNA. Control-MO (n = 22), TB-MO-204 (n = 27),
TB-MO-204+ human wt RNA (n = 29). Number of independent experiments
N = 3. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, ****p-value < 0.0001,
ns not significant. Two-way ANOVA. Mean: SEM.
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unknown significance reported in the here described individuals are men-
tioned in Supplement A.

For in silico analysis, we used Combined Annotation Dependent
Depletion GRCh38-v1.6 (CADD), Polymorphism-Phenotyping v2 (Poly-
Phen-2) and Sorting Intolerant From Tolerant (SIFT)31–33. MetaDome
Version 1.0.1 was applied to transcript ENST00000164024.4 to generate a
tolerance landscape, analyzing the variants based on the single nucleotide
missense and synonymous variants from gnomAD v3.1 in the protein-
coding region34. Evolutionary conservation of bp positions was estimated
using ConSurf35,36.

Structural modeling of CELSR3 protein and mapping of the
variants
PhosphositePlus16 and AlphaFold17 were used to model the structure of
CELSR3. The source code of the AlphaFold (deepmind) algorithm was
downloaded from https://github.com/deepmind/alphafold. Since the
human CELSR3 comprising 3,312 aa residues is too large to readily create a
full-length model, we split the protein into overlapping subdomains that
were individually usedas inputs forAlphaFold. Themodels of the individual
domains were structurally aligned using PyMOL. The boundaries of the
individual subdomains of the CELSR3 protein with overlapping segments
for structural alignment were: 1–240, 121–360, 241–720, 601–840,
721–1320, 1201–1440, 1321–1980, 1861–2100, 1981–2400, 2281–2520, and
2401–3312, respectively.

CELSR3 immunostaining of the human embryonic metanephric
kidney and urinary tract
Human embryonic tissues, collected aftermaternal consent andwith ethical
approval (REC18/NE/0290), were sourced from the Medical Research
Council and Wellcome Trust Human Developmental Biology Resource
(https://www.hdbr.org). Samples comprised gestational week 7, 10, and 12.
Tissues were paraffin embedded, sectioned as described37, and immunos-
tained with the following primary antibody: Rabbit polyclonal raised to the
N-terminal region of human CELSR3 (1:50 dilution; ab189012 from
Abcam). The primary antibody was detected with a secondary antibody
(1:200 dilution, Goat Anti-Rabbit ab6720 from Abcam) and signals gen-
erated with a DAB (SK-4100) peroxidase-based method37.

Zebrafish husbandry and embryo maintenance
Zfweremaintained according to recommendations byWesterfield38 and the
German national law (animal welfare act and § 11). Zfl of wt AB/TL strain,
transgenic Tg(-3.1ngn1:GFP) (ZFIN ID: ZDB-TGCONSTRCT-070117-
124), andTg(wt1b:EGFP) (ZFIN ID: ZDB-TGCONSTRCT-071127-1)were
obtained by natural spawning and raised at 28 °C in Danieau solution on
14 h light and ten hours dark cycle. All experiments were done on zfl at one
to five dpf before independent feeding39.

Morpholino® knockdown and mRNA rescue microinjections
The zf wt ortholog celsr3 (ENSDARG00000055825) is described with four
transcripts (celsr3-204: ENSDART00000145095.3; celsr3-201:
ENSDART00000078334.6; celsr3-202: ENSDART00000131888.2; celsr3-
203: ENSDART00000137391.2; Ensembl release 107)29. The sequences of
transcript celsr3-202 and celsr3-203 in zf are short and completely coveredby
transcript celsr3-201. Furthermore, transcript celsr3-201 and celsr3-204
overlap in parts and would be most similar to the only mentioned human
transcript CELSR3-201 as a combined transcript. Hence, analysis of the
5´UTR region with the purpose of identifying an AUG translational start
site was performed by extraction of total RNA from 35 zfl with TRIzol™
reagent (ThermoFisher Scientific,CatalogNo. 15596026) and rt-PCRusing
ProtoScript® II First Strand cDNA Synthesis Kit (New England BioLabs
GmbH, Catalog No. E6560). cDNA Amplification of 2138 bp upstream of
exon 1 to exon 2 transition of transcript celsr3-204 was performed using
forward primer 5´-GAGCACGGCGGAAGGAGTCG-3´ and reverse pri-
mer 5´-CTCTGTAATGATGAGCACCCGCAGC-3´. Celsr3 protein
sequence analysis of other species was facilitated using SerialCloner

2.6.1 software. Celsr3 KD was performed using specific Morpholino® Oli-
gonucleotides (MO) synthetized by GeneTools, LLC. Two TB-MOs were
designed targeting the AUG translational start site of transcript celsr3-201
(TB-MO-201, 5´-CTGCTGAGCATCTCCTCTGTAATGA-3´) and the
expected AUG translational start site of transcript celsr3-204 (celsr3-204
minus 195 bp, TB-MO-204, 5´-GTCTTCTGCAATCACCCACTCCATG-
3´). One splice-blockingMOwas designed targeting the boundary of celsr3-
204 exon 6 – intron 6 (SB-MO-e6i6, 5´-TCTTCAGTGGACTTTCT-
CACCTTGT-3´). In one- to two-cell zf embryos,MOmicroinjections were
performed into the yolk with celsr3 TB-MO-201, celsr3 TB-MO-204 or the
standard control MO (Control-MO, 5´-CCTCTTACCTCAGTTA-
CAATTTATA-3´) with ~4.5 ng for each MO (1.8 nl/embryo), or with
~5.9 ng for celsr3 SB-MO-e6i6 (1.8 nl/embryo). For mRNA rescue experi-
ments, ~70 pg of in vitro transcribed human wtCELSR3 polyAmRNA and
TB-MO-204 with non-identical sequences (bp) were co-injected. mRNA
transcription was performed on human CELSR3 cDNA ORF clone
OHu18524 (GenScript) containing NM_001407.3 using the mMESSAGE
mMACHINE T7 Ultra Kit (Thermo Fisher Scientific, Catalog No.
AMB13455) followed by polyA tailing using Invitrogen™ Poly-(A) Tailing
Kit (ThermoFisher, Invitrogen™, Catalog No. AM1350). For zfl injection,
concentrations were chosen to avoid dose-dependent effects after exam-
ination ranges of ~3.7–7.4 ng MO and 20–100 pg/nl mRNA solution.

CRISPR–Cas9 F0 knockout of celsr3
F0 KO zfl were generated using the CRISPR-Cas9 method as previously
described with slight modifications to the protocol40. With the purpose of
creating a truncated celsr3 transcript we designed six sgRNAs binding
shortly upstream of exon 1, in exon 1 and in exon 2 of celsr3-204
(NM_001407.3) using the open website tool https://www.crisprscan.org/41.
Reagents of Alt-RTM CRISPR-Cas9 System (Alt-R® CRISPR-Cas9 crRNA,
custom design; Alt-R® CRISPR-Cas9 tracrRNA; Alt-R® S.p. Cas9 Nuclease
V3, Catalog No. 1081058; Alt-R® CRISPR-Cas9 Negative “scrambled”
control crRNA #1-#3, Catalog No. 1072544-1072546; Nuclease-Free
Duplex Buffer, Catalog No. 11-05-01-12) were obtained from Integrated
DNATechnologies, Inc andprepared according to thedistributor’s anduser
protocols42. Equal amounts of either all six celsr3 sgRNAs or the three
scrambled control sgRNAs were combined to a 100 μM stock. Equal
amounts of these 100 µMsgRNAstocks and100 µMtracrRNAwere diluted
inNuclease-FreeDuplex Buffer to a final concentration of 3 µMor 6 µM for
scrambled control and celsr3 mix and annealed at 95 °C for 5min. These
were combinedwith the same amount (3.05/6.1 µM)ofCas9 protein diluted
in Cas9 working buffer each and incubated at 37 °C for 10min. Shortly
before injections 1 µl of phenol red was added. Injections of ~1.8 nl were
performed into the yolk of one- to two-cell zf embryos. Truncation of the
celsr3 genomic region was PCR tested at four dpf as previously described43.
Primer sequences, sgRNA sequences and genomic PCR-gel electrophoresis
images are provided in Supplementary Fig. 4.

In vivo imaging and phenotyping
Zf embryos were incubated with 0.2 mM 1-phenyl 2-thiourea (PTU, Cat-
alog No. P7629) supplemented to their Danieau solution from one to five
dpf to avoid pigmentation. Brightfield and fluorescence in vivo imagingwas
performed from one to five dpf using a ZEISS Axio V16 Multi-Zoom
microscope and analyzed with ZEN 2.3 Software. Phenotypic affection in
brightfield imaging was defined by the presence of irregular tail curvature
and/or disruption at the caudal end at two dpf. For CNS phenotype eva-
luation Tg(-3.1ngn1:GFP) zfl at three dpf were anesthetized with 0.03%
tricaine and fixed in 1.25% low-melting agarose. For evaluation of the
urinary tract phenotype Tg(wt1b:EGFP) zfl at three dpf were anesthetized
and fixed as described above. Z-stack-series with 2 µm step size was per-
formed with a Nikon A1R HD25 ECLIPSE Ti2E confocal laser scanning
microscope equipped with NIS-Elements 5.21.02 software. Phenotypic
differences in the developing pronephros in Tg(wt1b:EGFP) were analyzed
with theNIS-Element imaging software 5.21.00. To account for variation in
larvae size, the glomerulus diameter was normalized to the respective length
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of the pronephric neck segments. All experiments were repeated indepen-
dently at least three times (N ≥ 3).

Statistical analyses
GraphPad Prism Version 9.0.0 was used for one-way ANOVA with post-
hoc Tukey HSD Test and two-way ANOVA with SEM. Kaplan–Meier
survival curves were used to analyze survival within the first five dpf.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available in the supplemental
material. Additional data not compromisedby ethical issueswill be available
upon request from the corresponding authors. All sequencing data are
deposited in ClinVar (accession numbers: SCV004176841 –
SCV004176856). Mouse RNA-seq data at stages E10.5, E12.5 and E15.5
were obtained from Gene Expression Omnibus (GEO accession ID:
GSE190641)23. RNA-seq data of human embryonic and fetal bladder tissues
were obtained from already deposited data at EMBL-EBI expression atlas
(E-MTAB-6592).
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