23 research outputs found

    p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas

    Get PDF
    Squamous cell carcinoma (SCC), a malignancy arising across multiple anatomical sites, is responsible for significant cancer mortality due to insufficient therapeutic options. Here, we identify exceptional glucose reliance among SCCs dictated by hyperactive GLUT1-mediated glucose influx. Mechanistically, squamous lineage transcription factors p63 and SOX2 transactivate the intronic enhancer cluster of SLC2A1. Elevated glucose influx fuels generation of NADPH and GSH, thereby heightening the anti-oxidative capacity in SCC tumors. Systemic glucose restriction by ketogenic diet and inhibiting renal glucose reabsorption with SGLT2 inhibitor precipitate intratumoral oxidative stress and tumor growth inhibition. Furthermore, reduction of blood glucose lowers blood insulin levels, which suppresses PI3K/AKT signaling in SCC cells. Clinically, we demonstrate a robust correlation between blood glucose concentration and worse survival among SCC patients. Collectively, this study identifies the exceptional glucose reliance of SCC and suggests its candidacy as a highly vulnerable cancer type to be targeted by systemic glucose restriction

    The Co-Repressor SMRT Delays DNA Damage-Induced Caspase Activation by Repressing Pro-Apoptotic Genes and Modulating the Dynamics of Checkpoint Kinase 2 Activation

    Get PDF
    <div><p>Checkpoint kinase 2 (Chk2) is a major regulator of DNA damage response and can induce alternative cellular responses: cell cycle arrest and DNA repair or programmed cell death. Here, we report the identification of a new role of Chk2 in transcriptional regulation that also contributes to modulating the balance between survival and apoptosis following DNA damage. We found that Chk2 interacts with members of the NCoR/SMRT transcriptional co-regulator complexes and serves as a functional component of the repressor complex, being required for recruitment of SMRT on the promoter of pro-apoptotic genes upon DNA damage. Thus, the co-repressor SMRT exerts a critical protective action against genotoxic stress-induced caspase activation, repressing a functionally important cohort of pro-apoptotic genes. Amongst them, SMRT is responsible for basal repression of <i>Wip1</i>, a phosphatase that de-phosphorylates and inactivates Chk2, thus affecting a feedback loop responsible for licensing the correct timing of Chk2 activation and the proper execution of the DNA repair process.</p></div

    Metabolic Regulation of Epigenetic Modifications and Cell Differentiation in Cancer

    No full text
    Metabolic reprogramming is a hallmark of cancer, with consistent rewiring of glucose, glutamine, and mitochondrial metabolism. While these metabolic alterations are adequate to meet the metabolic needs of cell growth and proliferation, the changes in critical metabolites have also consequences for the regulation of the cell differentiation state. Cancer evolution is characterized by progression towards a poorly differentiated, stem-like phenotype, and epigenetic modulation of the chromatin structure is an important prerequisite for the maintenance of an undifferentiated state by repression of lineage-specific genes. Epigenetic modifiers depend on intermediates of cellular metabolism both as substrates and as co-factors. Therefore, the metabolic reprogramming that occurs in cancer likely plays an important role in the process of the de-differentiation characteristic of the neoplastic process. Here, we review the epigenetic consequences of metabolic reprogramming in cancer, with particular focus on the role of mitochondrial intermediates and hypoxia in the regulation of cellular de-differentiation. We also discuss therapeutic implications

    Estrogen receptor beta impacts hormone-induced alternative mRNA splicing in breast cancer cells

    Get PDF
    Estrogens play an important role in breast cancer (BC) development and progression; when the two isoforms of the estrogen receptor (ERĪ± and ERĪ²) are co-expressed each of them mediate specific effects of these hormones in BC cells. ERĪ² has been suggested to exert an antagonist role toward the oncogenic activities of ERĪ±, and for this reason it is considered an oncosuppressor. As clinical evidence regarding a prognostic role for this receptor subtype in hormone-responsive BC is still limited and conflicting, more knowledge is required on the biological functions of ERĪ² in cancer cells. We have previously described the ERĪ² and ERĪ± interactomes from BC cells, identifying specific and distinct patterns of protein interactions for the two receptors. In particular, we identified factors involved in mRNA splicing and maturation as important components of both ERĪ± and ERĪ² pathways. Guided by these findings, here we performed RNA sequencing to investigate in depth the differences in the early transcriptional events and RNA splicing patterns induced by estradiol in cells expressing ERĪ± alone or ERĪ± and ERĪ²
    corecore