6 research outputs found

    Cave deposits as a sedimentary trap for the Marine Isotope Stage 3 environmental record: The case study of Pod Hradem, Czech Republic

    Get PDF
    Pod Hradem Cave, located in the Moravian Karst, Czech Republic, offers an excellent opportunity for environmental reconstructions of Marine Isotope Stage 3 (MIS 3) in Central Europe due to its detailed sedimentary record dated 50,000 to 28,000 cal BP. Identifying the natural environments of the Middle to Upper Palaeolithic (MUP) transition is necessary to understand the settlement strategies and related behaviour of both Neanderthals and Anatomically Modern Humans, both of whom may have occupied the region at the same time. A multidisciplinary excavation was carried out between 2011 and 2016. Detailed analyses of the sediments, vertebrate microfauna, pollen and charcoal revealed minor but observable fluctuations in climate, with little change in the surrounding vegetation. The Pod Hradem palaeoenvironmental dataset is complex, but generally reflects a predominantly glacial climate with a range of vegetation types and habitats during the Late Pleistocene, followed by the warmer and more humid Holocene. The MUP transition as recorded in Pod Hradem Cave was a glacial environment interrupted by two relatively warmer periods. Central Europe experienced extreme climate fluctuations during MIS3, as recorded from different sedimentary archives, but it seems that the Pod Hradem Cave environment may have acted as a buffer zone, ameliorating those extremes, and providing a suitable refuge for both bears seeking winter hibernation dens and occasionally visiting humans.Thisproject was funded from the SoMoPro programme. Research leading tothese results has received a financial contribution from the EuropeanCommunity within the Seventh Framework Programme (FP/2007–2013) under Grant Agreement No. 229603. The research was alsoco-financed by the South Moravian Region and the Department ofAnthropology & Department of Geological Sciences (departmentalfunding - Masaryk University) and the internal programme of theInstitute of Geology CAS in Prague No. RVO 67985831

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years(1,2). Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period(3). Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe(4), but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.Molecular Technology and Informatics for Personalised Medicine and Healt
    corecore