76 research outputs found

    Implications of the Molybdenum Coordination Environment in MFI Zeolites on Methane Dehydroaromatisation Performance

    Get PDF
    The structure and activity of Mo/Silicalite‐1 (MFI, Si/Al=∞) were compared to Mo/H‐ZSM‐5 (MFI, Si/Al=15), a widely studied catalyst for methane dehydroaromatisation (MDA). The anchoring mode of Mo was evaluated by in situ X‐ray absorption spectroscopy (XAS) and density functional theory (DFT). The results showed that in Mo/Silicalite‐1, calcination leads to dispersion of MoO3 precursor into tetrahedral Mo‐oxo species in close proximity to the microporous framework. A weaker interaction of the Mo‐oxo species with the Silicalite‐1 was determined by XAS and DFT. While both catalysts are active for MDA, Mo/Silicalite‐1 undergoes rapid deactivation which was attributed to a faster sintering of Mo species leading to the accumulation of carbon deposits on the zeolite outer surface. The results shed light onto the nature of the Mo structure(s) while evidencing the importance of framework Al in stabilising active Mo species under MDA conditions

    Understanding the Deactivation Phenomena of Small-Pore Mo/H-SSZ-13 during Methane Dehydroaromatisation

    Get PDF
    Small pore zeolites have shown great potential in a number of catalytic reactions. While Mo-containing medium pore zeolites have been widely studied for methane dehydroaromatisation (MDA), the use of small pore supports has drawn limited attention due to the fast deactivation of the catalyst. This work investigates the structure of the small pore Mo/H-SSZ-13 during catalyst preparation and reaction by operando X-ray absorption spectroscopy (XAS), in situ synchrotron powder diffraction (SPD), and electron microscopy; then, the results are compared with the medium pore Mo/H-ZSM-5. While SPD suggests that during catalyst preparation, part of the MoOx anchors inside the pores, Mo dispersion and subsequent ion exchange was less effective in the small pore catalyst, resulting in the formation of mesopores and Al2(MOO4)3 particles. Unlike Mo/H-ZSM-5, part of the Mo species in Mo/H-SSZ-13 undergoes full reduction to Mo0 during MDA, whereas characterisation of the spent catalyst indicates that differences also exist in the nature of the formed carbon deposits. Hence, the different Mo speciation and the low performance on small pore zeolites can be attributed to mesopores formation during calcination and the ineffective ion exchange into well dispersed Mo-oxo sites. The results open the scope for the optimisation of synthetic routes to explore the potential of small pore topologies

    HUNGARIAN EXPERIENCE IN STRUCTURAL DESIGN CODING (HISTORICAL ANTECEDENTS OF EUROCODE-2)

    Get PDF
    This paper gives review of the historical antecedents of Eurocode-2 in Hungary and East Europe. The method of permissible stresses, using uniform safety factor was first changed in 1950 in Hungary by the semi-probabilistic method using partial safety factors. This new method was accepted with some resistance on the part of the leading structural engineers. Nevertheless most of the East-European countries accepted the new method with some political overtones', to be follow the Soviet example. The authors assert in the papaer that due to the economic necessities. Hungary and the other East European countries gained experience with the regulations affording less safety than the EC2, and this offers an interesting set of experience to the West European countries which have intoduced or are introducing the semi-probabilistic procedure. The most significant point all the experience is the recognition that only one part of the parameters in the structural analysis determining safety can be handled statistically. During design the statistically not significant data such as the error of the structural model must also be taken into consideration. Based on the experience, the authors propose an alternative design method

    Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme.

    Get PDF
    Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 μm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme-heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis We observed rates of heme-to-heme electron transfer on the order of 109 s-1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser-Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-μs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies
    corecore