12 research outputs found

    Ultrafast charge transfer dynamics in supramolecular Pt(II) donor-bridge-acceptor assemblies: the effect of vibronic coupling

    Get PDF
    Thanks to major advances in laser technologies, recent investigations of the ultrafast coupling of nuclear and electronic degrees of freedom (vibronic coupling) have revealed that such coupling plays a crucial role in a wide range of photoinduced reactions in condensed phase supramolecular systems. This paper investigates several new donor–bridge–acceptor charge-transfer molecular assemblies built on a trans-Pt(II) acetylide core. We also investigate how targeted vibrational excitation with low-energy IR light post electronic excitation can perturb vibronic coupling and affect the efficiency of electron transfer (ET) in solution phase. We compare and contrast properties of a range of donor–bridge–acceptor Pt(II) trans-acetylide assemblies, where IR excitation of bridge vibrations during UV-initiated charge separation in some cases alters the yields of light-induced product states. We show that branching to multiple product states from a transition state with appropriate energetics is the most rigid condition for the type of vibronic control we demonstrate in our study

    Ultrafast photoinduced charge transport in Pt(II) donor-acceptor assembly bearing naphthalimide electron acceptor and phenothiazine electron donor

    Get PDF
    Visible light-induced charge transfer dynamics were investigated in a novel transition metal triad acceptor–chromophore–donor, (NDI–phen)Pt(II)(–C[triple bond, length as m-dash]C–Ph–CH2–PTZ)2 (1), designed for photoinduced charge separation using a combination of time-resolved infrared (TRIR) and femtosecond electronic transient absorption (TA) spectroscopy. In 1, the electron acceptor is 1,4,5,8-naphthalene diimide (NDI), and the electron donor is phenothiazine (PTZ), and [(phen)Pt(–C[triple bond, length as m-dash]C–Ph–)], where phen is 1,10-phenanthroline, represents the chromophoric core. The first excited state observed in 1 is a 3MLCT/LL′CT, with {Pt(II)–acetylide}-to-phen character. Following that, charge transfer from the phen-anion onto the NDI subunit to form NDI−–phen–[Pt–(C[triple bond, length as m-dash]C)2]+–PTZ2 occurs with a time constant of 2.3 ps. This transition is characterised by appearance of the prominent NDI-anion features in both TRIR and TA spectra. The final step of the charge separation in 1 proceeds with a time constant of [similar]15 ps during which the hole migrates from the [Pt–(C[triple bond, length as m-dash]C)2] subunit to one of the PTZ groups. Charge recombination in 1 then occurs with two distinct time constants of 36 ns and 107 ns, corresponding to the back electron transfer to each of the two donor groups; a rather rare occurrence which manifests that the hole in the final charge-separated state is localised on one of the two donor PTZ groups. The assignment of the nature of the excited states and dynamics in 1 was assisted by TRIR investigations of the analogous previously reported ((COOEt)2bpy)Pt(C[triple bond, length as m-dash]C–Ph–CH2–PTZ)2 (2), (J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355; J. E. McGarrah, J. T. Hupp and S. N. Smirnov, J. Phys. Chem. A, 2009, 113, 6430) as well as (bpy)Pt(C[triple bond, length as m-dash]C–Ph–C7H15)2, which represent the acceptor-free dyad, and the chromophoric core, respectively. Thus, the step-wise formation of the full charge-separated state on the picosecond time scale and charge recombination via tunnelling have been established; and the presence of two distinct charge recombination pathways has been observed

    Oxygen mapping of melanoma spheroids using small molecule platinum probe and phosphorescence lifetime imaging microscopy

    Get PDF
    Solid tumours display varied oxygen levels and this characteristic can be exploited to develop new diagnostic tools to determine and exploit these variations. Oxygen is an efficient quencher of emission of many phosphorescent compounds, thus oxygen concentration could in many cases be derived directly from relative emission intensity and lifetime. In this study, we extend our previous work on phosphorescent, low molecular weight platinum(II) complex as an oxygen sensing probe to study the variation in oxygen concentration in a viable multicellular 3D human tumour model. The data shows one of the first examples of non-invasive, real-time oxygen mapping across a melanoma tumour spheroid using one-photon phosphorescence lifetime imaging microscopy (PLIM) and a small molecule oxygen sensitive probe. These measurements were quantitative and enabled real time oxygen mapping with high spatial resolution. This combination presents as a valuable tool for optical detection of both physiological and pathological oxygen levels in a live tissue mass and we suggest has the potential for broader clinical application

    Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand

    Get PDF
    Photodynamic therapy that uses photosensitizers which only become toxic upon light-irradiation provides a strong alternative to conventional cancer treatment due to its ability to selectively target tumour material without affecting healthy tissue. Transition metal complexes are highly promising PDT agents due to intense visible light absorption, yet the majority are toxic even without light. This study introduces a small, photostable, charge-neutral platinum-based compound, Pt(II) 2,6-dipyrido-4-methyl-benzenechloride, complex 1, as a photosensitizer, which works under visible light. Activation of the new photosensitizer at low concentrations (0.1–1 μM) by comparatively low dose of 405 nm light (3.6 J cm−2) causes significant cell death of cervical, colorectal and bladder cancer cell lines, and, importantly, a cisplatin resistant cell line EJ-R. The photo-index of the complex is 8. We demonstrate that complex 1 induces irreversible DNA single strand breaks following irradiation, and that oxygen is essential for the photoinduced action. Neither light, nor compound alone led to cell death. The key advantages of the new drug include a remarkably fast accumulation time (diffusion-controlled, minutes), and photostability. This study demonstrates a highly promising new agent for photodynamic therapy, and attracts attention to photostable metal complexes as viable alternatives to conventional chemotherapeutics, such as cisplatin

    Photocatalytic hydrogen production from a noble metal free system based on a water soluble porphyrin derivative and a cobaloxime catalyst

    Get PDF
    A combination of noble-metal free components, a water soluble porphyrin photosensitizer zinc meso-tetrakis(1-methylpyridinium- 4-yl)porphyrin chloride [ZnTMPyP4+]Cl4 (1) with cobaloxime complex [CoIII(dmgH)2(py)Cl] (2) as a catalyst, creates an efficient system for photochemical hydrogen production acting under visible light with 280 TONs. This is the first example of a water soluble porphyrin acting as a photosensitizer for cobaloxime catalysed H2 production

    Long-lived excited-state dynamics of i-motif structures probed by time-resolved infrared spectroscopy

    Get PDF
    UV-generated excited states of cytosine (C) nucleobases are precursors to mutagenic photoproduct formation. The i-motif formed from C-rich sequences is known to exhibit high yields of long-lived excited states following UV absorption. Here the excited states of several i-motif structures have been characterized following 267 nm laser excitation using time-resolved infrared spectroscopy (TRIR). All structures possess a long-lived excited state of ∼300 ps and notably in some cases decays greater than 1 ns are observed. These unusually long-lived lifetimes are attributed to the interdigitated DNA structure which prevents direct base stacking overlap

    Comparative study of the photophysical properties of nonplanar tetraphenylporphyrin and octaethylporphyrin diacids

    No full text
    The photophysical properties of the lowest excited singlet states, S1(,*), of two porphyrin diacids have been investigated. The diacids are H4TPP2 and H4OEP2 , the diprotonated forms of free base tetraphenylporphyrin (H2TPP) and octaethylporphyrin (H2OEP), respectively. Both diacids exhibit perturbed static and dynamic characteristics relative to the parent neutral complexes in solution at room temperature. These properties include enhanced yields of S1 S0 radiationless deactivation (internal conversion), which increase from ~0.1 for H2TPP and H2OEP to 0.4 for H4OEP2 and 0.6 for H4TPP2 . The fluorescence lifetimes of both diacids are strongly temperature dependent, with an activation enthalpy of ~1400 cm-1 for S1-state deactivation. The enhanced nonradiative decays and many other photophysical consequences of diacid formation are attributed primarily to nonplanar macrocycle distortions. Both H4TPP2 and H4OEP2 have been shown previously by X-ray crystallography to adopt saddle-shaped conformations, and the magnitudes of the perturbed properties for the two diacids in solution correlate with the extent of the deviations from planarity in the crystals. A model is proposed to explain the nonradiative decay behavior of the porphyrin diacids that is relevant to nonplanar porphyrins in general. The model includes the existence of decay funnels on the S1(,*)-state energy surface that are separated from the equilibrium conformation and other minima by activation barriers. It is suggested that these funnels involve configurations at which the potential-energy surfaces of the ground and excited states approach more closely than at the equilibrium excited-state structure(s) from which steady-state fluorescence occurs. Possible contributions to the relevant nuclear coordinates are discussed

    The photophysical and metal coordination properties of the N-CH3 substituted porphyrins: H(N-CH3)TPP vs H(CH3)OEP

    No full text
    The effect of N-methyl substitution on photophysical and metal coordination properties of the respective derivatives of octaethylporphyrin (H2OEP) and tetraphenylporphyrin (H2TPP) was studied by means of steady-state and time-resolved optical spectroscopies combined with semi-empirical quantum-chemical calculations and coordination chemistry methods. In case of H2TPP, the insertion of the methyl substituent into the center of the porphyrin macrocycle leads to noticeable nonplanar distortions of the molecule and is accompanied by changes of its photophysical and physicochemical properties towards those manifested by "classical" nonplanar porphyrins. Contrasting to that, N-methyl substituted H2OEP does not undergo significant nonplanar distortions and possesses photophysical characteristics mainly similar to unsubstituted H2OEP, except for the long-wavelength shift of the absorption and emission bands. The Zn coordination/Zn complex dissociation and macrocycle thermal stability parameters were also determined for both N-methyl substituted and parent unsubstituted macrocycles, which correlate well with a higher degree of nonplanarity of the N-methyl substituted H2TPP as compared to H2OEP. Basing on the results of this study the conclusion postulated is that N-methyl substitution has a different effect on the photophysical and coordination properties of H2TPP vs. H2OER Copyright (c) 2005 Society of Porphyrins & Phthalocyanines

    Frontispiece: Metal Complexes for Two-Photon Photodynamic Therapy: A Cyclometallated Iridium Complex Induces Two-Photon Photosensitization of Cancer Cells under Near-IR Light

    No full text
    International audienceComplexes for Photodynamic Therapy In their Communication on page 234 ff., J. A. Weinstein, H. E. Bryant et al. present two low-molecular-weight, long-lived and photo-stable iridium complexes of the [Ir(N C)2(N N)]+ family which have high two-photon absorption and localise to mitochondria and lysosomal structures. Both are efficient photosensitizers (PS) under 1-photon irradiation resulting in apoptotic death in cancer cell lines at low light doses, low concentrations, and high photo-indices. Complex 1 also displays high PS activity under NIR two-photon excitation, which along with its photo-stability indicates potential future clinical application
    corecore