103 research outputs found

    Assimilation of Earth rotation parameters into a global ocean model: excitation of polar motion

    Get PDF
    The oceanic contribution to Earth rotation anomalies can be manifold. Possible causes are a change of total ocean mass, changes in current speed or location and changes in mass distribution. To derive the governing physical mechanisms of oceanic Earth rotation excitation we assimilate Earth rotation observations with a global circulation ocean model. Before assimilation, observations of length of day and polar motion were transformed into estimates of ocean angular momentum. By using the adjoint 4D-VAR assimilation method we were able to reproduce these estimated time series. Although length of day was assimilated simultaneously the analysis in this paper focuses on the oceanic polar motion generation. Our results show that changes in mass distribution and currents contribute to oceanic polar motion generation. Both contributions are highly correlated and show similar amplitudes. The changes in the model done by the assimilation procedure could be related to changes in the atmospheric forcing. Since for geometrical reasons the change of total ocean mass does not project on polar motion, we conclude that the polar motion is mainly generated by a geostrophic response to atmospheric momentum forcing. In geostrophic currents mass displacement and current speed entail each other. This way the large similarity of mass and current generated ocean angular momentum can be explained

    Climate Trends and the Remarkable Sensitivity of Shelf Regions

    Get PDF
    Tidal motion of oceanic salt water through the ambient geomagnetic field induces periodic electromagnetic field signals. Amplitudes of the induced signals are sensitive to variations in electrical seawater conductivity and, consequently, to changes in oceanic temperature and salinity. In this paper, we computed and analyzed time series of global ocean tide‐induced magnetic field amplitudes. For this purpose, we combined data of global in situ observations of oceanic temperature and salinity fields from 1990–2016 with data of oceanic tidal flow, the geomagnetic field, mantle conductivity, and sediment conductance to derive ocean tide‐induced magnetic field amplitudes. The results were used to compare present day developments in the oceanic climate with two existing climate model scenarios, namely, global oceanic warming and Greenland glacial melting. Model fits of linear and quadratic long‐term trends of the derived magnetic field amplitudes show indications for both scenarios. Also, we find that magnetic field amplitude anomalies caused by oceanic seasonal variability and oceanic climate variations are 10 times larger in shallow ocean regions than in the open ocean. Consequently, changes in the oceanic and therefore the Earth's climate system will be observed first in shelf regions. In other words, climate variations of ocean tide‐induced magnetic field amplitudes are best observed in shallow ocean regions using targeted monitoring techniques

    A data assimilation twin experiment

    Get PDF
    Satellite observations of the magnetic field induced by the general ocean circulation could provide new constraints on global oceanic water and heat transports. This opportunity is investigated in a model-based twin experiment by assimilating synthetic satellite observations of the ocean-induced magnetic field into a global ocean model. The general circulation of the world ocean is simulated over the period of 1 month. Idealized daily observations are generated from this simulation by calculating the ocean-induced magnetic field at 450 km altitude and disturbing these global fields with error estimates. Utilizing an ensemble Kalman filter, the observations are assimilated into the same ocean model with a different initial state and different atmospheric forcing. Compared to a reference simulation without data assimilation, the corrected ocean-induced magnetic field is improved throughout the whole simulation period and over large regions. The global RMS differences of the ocean-induced magnetic field are reduced by up to 17%. Local improvements show values up to 54%. RMS differences of the depth-integrated zonal and meridional ocean velocities are improved by up to 7% globally, and up to 50% locally. False corrections of the ocean model state are identified in the South Pacific Ocean and are linked to a deficient estimation of the ocean model error covariance matrices. Most Kalman filter induced changes in the ocean velocities extend from the sea surface down to the deep ocean. Allowing the Kalman filter to correct the wind stress forcing of the ocean model is essential for a successful assimilation

    A conceptual ENSO model under realistic noise forcing

    Get PDF
    We investigated the influence of atmospheric noise on the generation of interannual El Niño variability. Therefore, we perturbed a conceptual ENSO delay model with surrogate windstress data generated from tropical windspeed measurements. The effect of the additional stochastic forcing was studied for various parameter sets including periodic and chaotic regimes. The evaluation was based on a spectrum and amplitude-period relation comparison between model and measured sea surface temperature data. The additional forcing turned out to increase the variability of the model output in general. The noise-free model was unable to reproduce the observed spectral bandwidth for any choice of parameters. On the contrary, the stochastically forced model is capable of producing a realistic spectrum. The weakly nonlinear regimes of the model exhibit a proportional relation between amplitude and period matching the relation derived from measurement data. The chaotic regime, however, shows an inversely proportional relation. A stability analysis of the different regimes revealed that the spectra of the weakly nonlinear regimes are robust against slight parameter changes representing disregarded physical mechanisms, whereas the chaotic regime exhibits a very unstable realistic spectrum. We conclude that the model including stochastic forcing in a parameter range of moderate nonlinearity best matches the real conditions. This suggests that atmospheric noise plays an important role in the coupled tropical pacific ocean-atmosphere system

    Electromagnetic characteristics of ENSO

    Get PDF
    The motion of electrically conducting sea water through Earth's magnetic field induces secondary electromagnetic fields. Due to its periodicity, the oceanic tidally induced magnetic field is easily distinguishable in magnetic field measurements and therefore detectable. These tidally induced signatures in the electromagnetic fields are also sensitive to changes in oceanic temperature and salinity distributions. We investigate the impact of oceanic heat and salinity changes related to the El Niño–Southern Oscillation (ENSO) on oceanic tidally induced magnetic fields. Synthetic hydrographic data containing characteristic ENSO dynamics have been derived from a coupled ocean–atmosphere simulation covering a period of 50 years. The corresponding tidally induced magnetic signals have been calculated with the 3-D induction solver x3dg. By means of the Oceanic Niño Index (ONI), based on sea surface temperature anomalies, and a corresponding Magnetic Niño Index (MaNI), based on anomalies in the oceanic tidally induced magnetic field at sea level, we demonstrate that evidence of developing ENSO events can be found in the oceanic magnetic fields statistically 4 months earlier than in sea surface temperatures. The analysis of the spatio-temporal progression of the oceanic magnetic field anomalies offers a deeper understanding on the underlying oceanic processes and is used to test and validate the initial findings

    Affording to Wait: Medicare Initiation and the Use of Health Care

    Get PDF
    Delays in receipt of necessary diagnostic and therapeutic medical procedures related to the timing of Medicare initiation at age 65 years have potentially broad welfare implications. We use 2005–2007 data from Florida and North Carolina to estimate the effect of initiation of Medicare benefits on healthcare utilization across procedures that differ in urgency and coverage. In particular, we study trends in the use of elective procedures covered by Medicare to treat conditions that vary in symptoms; these are compared with elective surgical procedures not eligible for Medicare reimbursement, and to a set of urgent and emergent procedures. We find large discontinuities in health services utilization at age 65 years concentrated among low urgency, Medicare‐reimbursable procedures, most pronounced among screening interventions and treatments for minimally symptomatic disease

    On the detectability of the magnetic fields induced by ocean circulation in geomagnetic satellite observations

    Get PDF
    Due to their sensitivity to conductivity and oceanic transport, magnetic signals caused by the movement of the ocean are a beneficial source of information. Satellite observed tidal-induced magnetic fields have already proven to be helpful to derive Earth’s conductivity or ocean heat content. However, magnetic signals caused by ocean circulation are still unobserved in satellite magnetometer data. We present a novel method to detect these magnetic signals from ocean circulation using an observing system simulation experiment. The introduced approach relies on the assimilation of satellite magnetometer data based on a Kalman filter algorithm. The separation from other magnetic contributions is attained by predicting the temporal behavior of the ocean-induced magnetic field through presumed proxies. We evaluate the proposed method in different test case scenarios. The results demonstrate a possible detectability of the magnetic signal in large parts of the ocean. Furthermore, we point out the crucial dependence on the magnetic signal’s variability and show that our approach is robust to slight spatial and temporal deviations of the presumed proxies. Additionally, we showed that including simple prior spatial constraints could further improve the assimilation results. Our findings indicate an appropriate sensitivity of the detection method for an application outside the presented observing system simulation experiment. Therefore, we finally discussed potential issues and required advances toward the method’s application on original geomagnetic satellite observations

    Data assimilation for a visco-elastic Earth deformation model

    Get PDF
    We present a data assimilation algorithm for the time-domain spectral-finite element code VILMA. We consider a 1D earth structure and a prescribed glaciation history ICE5G for the external mass load forcing. We use the Parallel Data Assimilation Framework (PDAF) to assimilate sea level data into the model in order to obtain better estimates of the viscosity structure of mantle and lithosphere. For this purpose, we apply a particle filter in which an ensemble of models is propagated in time, starting shortly before the last glacial maximum. At epochs when observations are available, each particle's performance is estimated and they are resampled based on their performance to form a new ensemble that better resembles the true viscosity distribution. In a proof of concept we show that with this method it is possible to reconstruct a synthetic viscosity distribution from which synthetic data were constructed. In a second step, paleo sea level data are used to infer an optimised 1D viscosity distribution

    An approach for constraining mantle viscosities through assimilation of palaeo sea level data into a glacial isostatic adjustment model

    Get PDF
    Glacial isostatic adjustment is largely governed by the rheological properties of the Earth's mantle. Large mass redistributions in the ocean–cryosphere system and the subsequent response of the viscoelastic Earth have led to dramatic sea level changes in the past. This process is ongoing, and in order to understand and predict current and future sea level changes, the knowledge of mantle properties such as viscosity is essential. In this study, we present a method to obtain estimates of mantle viscosities by the assimilation of relative sea level rates of change into a viscoelastic model of the lithosphere and mantle. We set up a particle filter with probabilistic resampling. In an identical twin experiment, we show that mantle viscosities can be recovered in a glacial isostatic adjustment model of a simple three-layer Earth structure consisting of an elastic lithosphere and two mantle layers of different viscosity. We investigate the ensemble behaviour on different parameters in the following three set-ups: (1) global observations data set since last glacial maximum with different ensemble initialisations and observation uncertainties, (2) regional observations from Fennoscandia or Laurentide/Greenland only, and (3) limiting the observation period to 10 ka until the present. We show that the recovery is successful in all cases if the target parameter values are properly sampled by the initial ensemble probability distribution. This even includes cases in which the target viscosity values are located far in the tail of the initial ensemble probability distribution. Experiments show that the method is successful if enough near-field observations are available. This makes it work best for a period after substantial deglaciation until the present when the number of sea level indicators is relatively high
    corecore