184 research outputs found

    Erythrocytes alterations of monosex tilapia (Oreochromis niloticus, Linnaeus, 1758) produced using methyltestosterone

    Get PDF
    AbstractThe present study aims to investigate the effects of methyltestosterone on monosex farmed tilapia, Oreochromis niloticus by detection of apoptosis, micronucleus and alterations of erythrocytes. Fishes were obtained from four localities (Assiut as a control and Beheira, Alexandria and Kafr EL-Sheikh; three farms from each governorate as farmed monosex produced using methyltestosterone). Blood smears were processed for Hematoxylin and eosin technique. The major alterations recorded in the red blood cells were as swelled cells (Sc), tear drop-like cells (Tr), and sickle cells (Sk). Also, a significant difference (P⩽0.001) between three governorates and Assiut was recorded in the micronucleus test, apoptosis and altered erythrocytes. These alterations are considered as an indication for performance and health of fish in the monosex culture medium indicating the side effects of overdose induction of MT

    Toxicity of co-exposure of microplastics and lead in African catfish (Clarias gariepinus)

    Get PDF
    Microplastics (MPs) are an emerging threat to freshwater ecosystems with several ecotoxicological ramifications for fish. Microplastics (MPs) can adsorb heavy metals on their surfaces and increase their availability to aquatic organisms. The combined impact of lead and microplastics on fish has only been studied seldom utilizing a variety of markers. The present study aimed to evaluate the hematological, biochemical, and inflammatory signals (cytokines), as well as antioxidant enzymes in African catfish (Clarias gariepinus) exposed to lead (Pb) and MPs individually and combined for 15 days (acute toxicity experiment). The fish were split into four groups, the first of which was the control group. The second group received exposure to 1 mg/L of lead nitrate [Pb(NO3)2]. The third group was given 100 mg/L of MPs. A solution containing 100 mg/L of MPs and 1 mg/L of lead nitrate [Pb(NO3)2] was administered to the fourth group (the combination group). According to the findings, when MPs and Pb were combined for 15 days, the red blood cells (RBCs), thrombocytes, and lymphocytes were significantly reduced in comparison to the control fish. When compared to the control fish, the fish exposed to MPs and Pb alone or together showed a significant rise in blood interleukin-1β (IL-1β) and interleukin-6 (IL-6) cytokines. Both MPs and Pb exposure in catfish resulted in significant changes in the plasma electrolytes. The fish treated with MPs and Pb individually or in combination showed significant reduction in superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels compared to the control group. The fish exposed to the combined action of MPs and Pb showed a considerable modification in all biochemical markers. The difference in the mean concentration of Pb (mg/L) between the fish exposed to Pb alone and the fish subjected to Pb and MPs combination was not statistically significant. In conclusion, according to this investigation, exposure to Pb caused an insignificant increase in Pb accumulation when MPs were present. However, co-exposure may result in anemia, cellular harm, extremely high levels of oxidative stress, and an inflammatory reaction

    Review of climate change research in Egypt

    Get PDF

    Effects of ammonia toxicity on growth performance, cortisol, glucose and hematological response of Nile Tilapia (Oreochromis niloticus)

    Get PDF
    Ammonia is a production limiting factor in the aquaculture media affecting fish production. A study was designed to scrutinize effects of ammonia on growth performance, survival, cortisol and hematological parameters of Tilapia fish. The study examined effects of 96 h-incubation of male and female Tilapia with 3 mg ammonium chloride per a liter of water compared to control. The study has been carried out in the physiology laboratory of the department of animal and fish production, Alexandria University. Fourteen aquaria were used (6 control and 8 ammoniated). Each aquarium contained 6 fish (half the population males and the other have females). Duration of the control reared fish was 30 days, however the duration for ammoniated group was 4 days. In all stressed fish, there found decreases in final body weight, average daily gain and specific growth rate as compared to controls. Hematological parameters revealed increases (P0.05) in total leukocyte counts in both males and females exposed to stressors. There were significant decreases (P0.05) in red blood cell, hematocrit value and hemoglobin concentration in both males and females. There were non-significant differences (P0.10) in these parameters between males and females. Exposing both male and female tilapia to ammonia, resulted in increases (P0.05) in mean corpuscular volume (MCV). Mean corpuscular hemoglobin (MCH) didn’t change in male tilapia, while females expressed increased MCH values in the ammonia condition. Mean corpuscular hemoglobin concentration (MCHC) decreased (P0.05) under ammonia with no differences between males and females. Differential leukocyte count exhibited increases (P0.05) in neutrophils in ammonia-exposed males and females and decreases (P0.05) in eosinophils and monocytes in males, but not in females. However, lymphocytes decreased (P0.05) in both females and males exposed to ammonia. Cortisol level increased (P0.05) by about 2 folds in both sexes of fish exposed to ammonia (2.95 and 2.72 vs6.40 and 6.48 ng/ml in control males and females vs ammonia-exposed males and females).Rearing tilapia fish in media containing high level (3mg/l water) of ammonium chloride not only deteriorated growth rate but it also negatively affected the health wellbeing.

    Effects of ultraviolet A on the activity of two metabolic enzymes, DNA damage and lipid peroxidation during early developmental stages of the African catfish, Clarias gariepinus (Burchell, 1822)

    Get PDF
    Many ultraviolet-A (UVA)-induced biochemical and physiological changes are valid as biomarkers using aquatic species for detection of the degree of stress. Changes in the concentration and activities of enzymes, such as glucose-6-phosphate dehyderogenase (G6PDH), lactate dehyderogenase (LDH), DNA damage and lipid peroxidation (LPO), can be used as biomarkers to identify possible environmental contamination in fish. This study aimed to investigate the impact of UVA on the activity of the selected enzymes, DNA damage and LPO during early developmental stages of the African catfish Clarias gariepinus. Embryo hemogenates were used for measurements of G6PDH, LDH, DNA damage and LPO concentrations and activities spectrophotometrically at 37°C. The normal ontogenetic variations in enzyme activities, DNA damage and LPO of the early developmental stages (24–168 h-PFS; hours-post fertilization stage) were studied. There was a significant decrease in the activity of G6PDH till 120 h-PFS. Then after 120 h-PFS, the activity of such enzymes insignificantly increased toward higher stages. The LDH activity was recorded with a pattern of decrease till 96 h-PFS, followed by a significant increase toward 168 h-PFS. The polynomial pattern of variations in DNA damage and LPO was also evident. The patterns of the enzyme activities, corresponding DNA damage and LPO of the early ontogenetic stages under the influence of three different UVA doses (15, 30 and 60 min), were recorded. The pattern of variations in G6PDH activity in UVA-induced groups was similar to that of the control group with variation in the magnitude of such activity. In all treated groups, LDH activity decreased till 96 h-PFS, then increased till 168 h-PFS. Within each of the embryonic stages, the increase in UVA led to a significant increase in DNA damage. A significant increase in lipid peroxidation under UVA doses was recorded. The variability in number and molecular weight of proteins under exposure to UVA was evident, reflecting some of the genetic and transcriptional changes during exposure and development

    Development and evaluation of a self-nanoemulsifying drug delivery system for sinapic acid with improved antiviral efficacy against SARS-CoV-2

    Get PDF
    This study aimed to develop a self-nanoemulsifying drug delivery system (SNE) for sinapic acid (SA) to improve its solubility and antiviral activity. Optimal components for the SA-SNE formulation were selected, including Labrafil as the oil, Cremophor EL as the surfactant, and Transcutol as the co-surfactant. The formulation was optimized using surface response design, and the optimized SA-SNE formulation exhibited a small globule size of 83.6 nm, high solubility up to 127.1 ± 3.3, and a 100% transmittance. In vitro release studies demonstrated rapid and high SA release from the formulation. Pharmacokinetic analysis showed improved bioavailability by 2.43 times, and the optimized SA-SNE formulation exhibited potent antiviral activity against SARS-CoV-2. The developed SA-SNE formulation can enhance SA’s therapeutic efficacy by improving its solubility, bioavailability, and antiviral activity. Further in silico, modeling, and Gaussian accelerated molecular dynamics (GaMD)-based studies revealed that SA could interact with and inhibit the viral main protease (Mpro). This research contributes to developing effective drug delivery systems for poorly soluble drugs like SA, opening new possibilities for their application via nebulization in SARS-CoV-2 therapy

    Effects of major and trace elements from the El Kahfa ring complex on fish: Geological, physicochemical, and biological approaches

    Get PDF
    The alkaline rocks are known for enriching rare lithophilic elements, including lithium, uranium, and tin, which negatively impact aquatic life. This study offers an intensive investigation of the influence of alkaline rocks on Nile Tilapia (Oreochromis niloticus). The variation in blood profile, the induction of antioxidant enzymes, morphological erythrocyte, and histological structure have been conducted for the fish after 15 days of exposure to alkaline rocks powder with a dose of 100 μg/L. As a result, there was a pronounced decrease in blood profiles, such as platelets and white blood cell counts. There was a failure in the liver and kidney functions. Moreover, it shows an increase in superoxide dismutase (SOD) and catalase (CAT) activities as antioxidant biomarkers. Also, exposure to alkaline rocks induced DNA mutation and erythrocyte distortion. We concluded that the bulk alkaline rocks induced changes in the hemato-biochemical and antioxidant parameters of Nile tilapia. Additionally, exposure to bulk alkaline rock compounds also caused poikilocytosis and nuclear abnormalities of RBCs. This draws our attention to the seriousness of climatic changes, the erosion of rocks, and their access to water

    Application of emulsified acids on sandstone formation at elevated temperature conditions: an experimental study

    Get PDF
    Emulsified acid has attracted considerable attention of the oil and gas industry due to its delayed nature that allows deeper penetration of acid into the formation which essentially facilitate further enhancing the well productivity, and at the same time minimizes the corrosion issues. However, emulsified acid has only been extensively studied and applied on carbonate formations. Considering more than half of the reservoirs worldwide are sandstone reservoirs, studying the effects of emulsified acid on sandstone under high-temperature conditions would unlock the potential of emulsified acid and help generate more value for the oil and gas industry by improving the well productivity from sandstone reservoirs. To ensure the applicability of the emulsified acid on the real sandstone reservoir, which usually has a temperature higher than ambient conditions, the stability of emulsified acids is investigated under 300 °F. Then, the stable emulsified acid samples are developed and their impact on the properties of Berea sandstone core samples, including porosity, pore-size distribution, permeability and wettability, are investigated. The core samples have undergone pre-flush (10% HCl:5% CH3COOH) before the main flush (emulsified acid). The emulsified acids are prepared using hydrofluoric acid, hydrochloric acid, phosphoric acid, cationic surfactant and chelating agent. Fourteen core samples are saturated with different emulsified acids under vacuum conditions for 3 days to ensure maximum saturation. The porosity, permeability and wettability of each core sample are measured before and after the reaction with acid. Nuclear magnetic resonance analysis has been applied to evaluate the change in pore size distribution. This study has demonstrated that the emulsified acids are capable of improving the porosity and permeability of Berea sandstone core sample. The pore size distribution has also been affected by the application of emulsified acid, where more large pores have been evolved to the core samples due to the reaction of acids with the sandstone which ultimately helps in improving the productivity of hydrocarbons. This indicates less precipitation of the secondary reaction products resulting better enhancement in sandstone flow properties. These results demonstrate the potential of emulsified acid during sandstone acidizing as emulsified acid significantly improved the sandstone properties which can essentially enhance the well productivity
    corecore