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Abstract The present study aims to investigate the effects of methyltestosterone on monosex

farmed tilapia, Oreochromis niloticus by detection of apoptosis, micronucleus and alterations of ery-

throcytes. Fishes were obtained from four localities (Assiut as a control and Beheira, Alexandria

and Kafr EL-Sheikh; three farms from each governorate as farmed monosex produced using

methyltestosterone). Blood smears were processed for Hematoxylin and eosin technique. The major

alterations recorded in the red blood cells were as swelled cells (Sc), tear drop-like cells (Tr), and

sickle cells (Sk). Also, a significant difference (P 6 0.001) between three governorates and Assiut

was recorded in the micronucleus test, apoptosis and altered erythrocytes. These alterations are con-

sidered as an indication for performance and health of fish in the monosex culture medium indicat-

ing the side effects of overdose induction of MT.
� 2015 National Institute of Oceanography and Fisheries. Hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Tilapia fish was considered as one of the most important fish of

all aquaculture in 21st century (Fitzsimmons, 2000; Sawhney
and Johal, 2000). Tilapia has certain favorable characteristics,
like most tolerant to adverse environmental conditions, and

can survive at low dissolved oxygen (Magid and Babiker,
1975; Ross, 2000), euryhaline (El-Sayed, 2006), relatively fast
growth and efficient food conversion (Asad et al., 2010).
The production of tilapia (Oreochromis sp.) all-male popu-
lations is important in aquaculture to avoid energy consump-

tion in reproduction and to produce the sex with the larger
growth potential (Macintosh and Little, 1995; Green et al.,
1997; Dan and Little, 2000; Tran-Duy et al., 2008). For pro-

ducing mono-sex populations the steroid-induced sex inversion
such as 17a-methyltestosterone (MT) are the most common
techniques. The use of those techniques is widespread in tilapia
aquaculture (Green et al., 1997; Green and Teichert-

Coddington, 2000; Wahby and Shalaby, 2010; Celik and
Guner, 2011), but the side effects of the overdoses of those hor-
mones are not reported especially in the field studies.

The micronucleus (MN) test has been used successfully as a
mutagenic assay in fish (Minissi et al., 1996; Kan et al., 2012).
Therefore, the MN test in fish erythrocytes has been used as a
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biomarker for environmental mutagenesis (Al-Sabti and
Metcalfe, 1995; Ateeq et al., 2002; Kan et al., 2012). The detec-
tion of micronucleus (MN) helps us to know the status of

water quality, the health of species and potential risk
(Al-Sabti and Metcalfe, 1995; Mekkawy et al., 2011). The
study of micronucleus test and erythrocytes alterations in

fishes by various chemicals has been reported (Grisolia and
Starling, 2001; Ferraro et al., 2004; Talapatra and Banerjee,
2007; Mekkawy et al., 2011). Also, its feasibility has already

been established in Clarias gariepinus (Ateeq et al., 2002;
Mekkawy et al., 2011; Sayed et al., 2013). It has been reported
that, nuclear abnormalities are a bioindicator of genotoxic
damage in fish (Bombail et al., 2001; Talapatra and

Banerjee, 2007; Mekkawy et al., 2011; Sayed et al., 2013).
Alternatively, various erythrocytes alterations are
effective indicators of cytotoxicity (Mekkawy et al., 2011;

Sayed et al., 2013; Sayed and Fawzy, 2014; Ateeq et al.,
2002). Cell shrinkage, membrane blebbing and chromatin
condensation are signs for apoptotic cells (Talapatra and

Banerjee, 2007; Iarmarcovai et al., 2008) and that have been
considered as indicator of abnormal cell divisions
(Cavas and Ergene-Gozukara, 2005a; Talapatra and

Banerjee, 2007).
Therefore, the aim of the present work was undertaken to

investigate the side effects of methyltestosterone in sex reversal
in monosex farms of Nile tilapia in Egypt using biomarkers

tools as apoptosis detection, micronucleus and morphological
alterations in blood erythrocytes.
Material and methods

Sample collection

Seventy-two male fishes of The Nile tilapia, Oreochromis niloti-
cus were caught from Assiut farms as control and monosex

fishes from three farms of Beheira, Alexandria and Kafr EL-
Sheikh as monosex farms in Egypt. The site and data of those
farms and fishes were reported in our previous publication

(Sayed and Moneeb, 2015).

Water quality assessment

Water-quality criteria [pH, dissolved oxygen, water tempera-

ture, conductivity, salinity, turbidity, phenols, chloridate, fluo-
ridate, sulfate, nitrate, cyanide and ammonia] of the selected
sites were measured during the fish collection. Total Fe, Cd,

Pb, Zn, Cr, and Hg were measured using graphite furnace
AA (GFAA) spectroscopy. Water sampling and quality assess-
ment were done according to APHA, 2005. In addition

methyltestosterone concentrations were estimated in water
and sediments of the farms in concern according to the proto-
col of Risto et al. (2013) using kits purchased from R-

Biopharm AG, Darmstadt, Germany.

Determination of methyltestosterone in fish serum and muscle

Estimation of the MT concentrations in fish serum and muscle,

was prepared according to the protocol of Risto et al. (2013)
using kits purchased from R-Biopharm AG, Darmstadt,
Germany.
Micronucleus test and erythrocytes alterations

Six fishes from each farm were removed and anesthetized in
MS-222 (50 mg/l) solution for blood smearing. Peripheral
blood samples were obtained from caudal vein; three air dried

blood smears for each fish were prepared. Fixation, dehydra-
tion, staining and clearing were done according to Pascoe
and Gatehouse, 1986. Examination and criteria for identifying
and scoring MN were done according to Al-Sabti and

Metcalfe, 1995; Schmidt, 1975.

Apoptosis detection

Apoptotic erythrocytes were detected using Acridine Orange
(AO) stain (Cat. No. A1031), Life Technologies, 5791 Van
Allen Way Carlsbad, CA 92008 USA). The modified protocol

according to Darzynkiewicz, 1990 was used to detect the apop-
tosis in RBCs, after preparation of blood smears on clean glass
slides, the slides were washed in 1� PBS (pH = 7.2). AO buf-

fer (17 lg/l Acridine Orange in 1� PBS buffer) was added to
the slides for 30 min in the dark. Decolorization process was
achieved by washing the slides every 30 min with 1� PBS for
four times. Fixation was in paraformaldehyde 4% for 5 min.

Finally observation of cells was made under Zeiss Axioplan2
fluorescence microscope (�200) provided with a digital 3
CCD color video camera (Sony, AVT-Horn).

Statistical analysis

Data statistical analysis was done using the statistical package

for the social science; Inc., Chicago, IL, USA (SPSS, 1998) sta-
tistical program, version 16.

Ethical statement

The study was carried out in accordance with the Egyptian laws
and University guidelines for the care of experimental animals.
All procedures of the current work have been approved by the

Committee of the Faculty of Science of Assiut University, Egypt.

Results

Physicochemical water parameters

The measured physico-chemical parameters of the water sam-
ples collected from Assiut farms as control and three farms of
Beheira, Alexandria and Kafr EL-Sheikh as monosex farms

were reported in Sayed and Moneeb (2015). Most of these
parameters showed the highest values in the water of the
monosex farms in comparison to Assiut farms. In addition,

Table 1 shows mean ± SE of methyltestosterone concentra-
tions in water and sediments collected from Assiut farms as
control and the three monosex farms. The three monosex
farms showed highest values in comparison to Assiut farms

which showed no detection (<0.1).

Determination of methyltestosterone in fish serum and muscles

Table 1 shows mean ± SE of methyltestosterone concentra-
tions in serum and muscle fish samples from Assiut farms as



Table 1 Methyltestosterone concentrations in water, sediment, serum and muscle from Assiut and monosex farms, (n= 6).

Governorates Water (ng/ml) Sediment (ng/g) Serum (ng/ml) Muscle (ng/g)

Assiut <0.1 <0.1 <0.1 <0.1

Alexandria 0.87 ± 0.11 0.33 ± 0.05 2.32 ± 0.31 1.54 ± 0.15

Kafr EL-Sheikh 1.07 ± 0.07 0.35 ± 0.04 2.03 ± 0.16 0.93 ± 0.07

Beheira 1.28 ± 0.1 0.67 ± 0.04 3.47 ± 0.19 2.01 ± 0.19

Figure 1 (a, b) Blood film of Nile tilapia Oreochromis niloticus from Assiut farms showing normal erythrocytes (Er) and leucocytes (L).

(H&E, �400).
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control and three farms of Beheira, Alexandria and Kafr EL-
Sheikh as monosex farms. The three monosex farms showed

highest values of MT concentrations in comparison to Assiut
farms in which no values in water, sediments, serum and mus-
cle were recorded (<0.1).

Apoptosis detection and erythrocytes alterations

Fig. 1 shows the normal structure of erythrocytes (Er) and leu-

cocytes (L) of the blood smear of tilapia in Assiut farms.
Figs. 2–4 show the blood smears of tilapia from Beheira,
Alexandria and Kafr EL-Sheikh farms, respectively. They rep-
resent the normal structure of erythrocytes (Er) and leucocytes

(L) with presence of some alterations of RBCs in the studied
fishes. The major alterations of RBCs were swelled cells (Sc),
tear drop like cells (Tr), their shape looks like tear with pointed

apices and sickle cells (Sk) which vary in shape between ellip-
soidal, boat-shaped and genuine sickles. Also, hemolyzed cells
(Hc) and cells have prominent vacuoles (Va) which were

observed in the blood smears.
The apoptotic cell percentage appears in the monosex farms

more than the control fish from Assiut farms. Also Fig. 5

shows the apoptotic cells of Assiut farms lower than the mono-
sex farms which appeared in light green color under the fluo-
rescence microscope stained with Acridine Orange.

Variation in apoptotic RBCs, micronucleus and altered
erythrocytes count

The apoptotic cell percentage of control fish from Assiut farms

was 0.87 ± 0.12% and this percentage increased significantly
(P< 0.05) in the monosex farms (Alexandria, Kafr EL-
Sheikh and Beheira). Also, the micronuclei percentage of con-

trol fish from Assiut farms was 0.09 ± 0.04% and this value
was increased significantly (P < 0.05) in the monosex farms.
The number of altered erythrocytes of control fish from Assiut

farms was 2.56 ± 0.2% and this value was also significantly
increased (P < 0.05) in the monosex farms (see Fig. 6).

Discussion

The synthetic hormone, 17a-methyltestosterone (MT), is used
to induce male monosex in fish hatcheries with different types

of manipulation and techniques (Wahby and Shalaby, 2010;
Celik and Guner, 2011). By feeding small amounts of male
hormone to tilapia fry before and during sexual differentiation,
virtually all the treated fish develop as males morphologically

and the potential of the stock to reproduce is thereby
eliminated.

This form of sex control has the added benefit that male

tilapias generally grow faster than females, with a result that
all-male fish are larger and more uniform in size than mixed
sex tilapias (Smith and Phelps, 1997; Hussain et al., 2005).

These desirable growth characteristics are particularly shown
by MT treated Nile tilapia) O. niloticus), which is the major
tilapia species cultivated commercially worldwide (FAO,

2006).
To our knowledge this is the first field investigation dealing

with the study of the effects of use of methyltestosterone in
tilapia sex reversal at Egypt in the field not experimentally.

The detailed investigation of water-quality assessment along
the studying areas showed similar mean values of nearly all



Figure 2 (a–d) Blood film of Nile tilapia Oreochromis niloticus from three farms at Beheira showing normal erythrocytes (Er) and

leucocytes (L) with presence of swelled cells (Sc), sickle cells (Sk), tear drop like cells (Tr), hemolyzed cells (Hc), micronucleus (MN) and

cells have prominent vacuoles (Va) (H&E, �400).

Figure 3 (a–c) Blood film of Nile tilapia Oreochromis niloticus from three farms at Alexandria showing normal erythrocytes (Er) and

leucocytes (L) with presence of swelled cells (Sc), sickle cell (Sk), tear drop like cells (Tr), hemolyzed cells (Hc) and cells have prominent

vacuoles (Va) (H&E, �400).

86 A.H. Sayed et al.



Figure 4 (a–c) Blood film of Nile tilapia Oreochromis niloticus from three farms at Kafr EL-Sheikh showing normal erythrocytes (Er)

and leucocytes (L) with presence of swelled cells (Sc), sickle cells (Sk), tear drop like cells (Tr), hemolyzed cells (Hc) and cells have

prominent vacuoles (Va). (H&E, �400).
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the detected physico-chemical parameters in water collected

from farms. Those results indicated that the physico-
chemical parameters of water which was collected from the fish
farms of the selected areas is high compared with those col-
lected from river Nile in a previous study (Osman et al.,

2012). The results of Osman et al. (2012) proved the presence
of organic and inorganic pollutants in water along the river
Nile and this finding indicated the fact that the level of con-

tamination in the river Nile is greater than in fish farms.
MN test is used to detect the biological impacts of water

pollution (Minissi et al., 1996) and to assess the genotoxicity

of chemical compounds after direct or indirect exposure in
fishes (Mekkawy et al., 2011; Osman et al., 2012). For fish spe-
cies, the MN test is an excellent biomarker for cytogenetic
studies in (Hooftman and Vink, 1981) and for detecting clasto-

genic substances in aqueous media in different types of fishes
(Abdul-Farah et al., 2003; Cavas and Ergene-Gözükara,
2005b). Abdul-Farah et al. (2003) reported time dependent

increase in MN induction in the peripheral blood of Channa
punctatus exposed to pollutants. Also, Kumar et al. (2010),
investigated the genotoxic effect of malathion in peripheral

erythrocytes of C. punctatus and reported that MN frequency
increased compared to the control. Our previous studies indi-
cated that the MN frequency in C. gariepinus was reported

to increase due to the exposure of 4-nonylphenol with concen-
trations (Mekkawy et al., 2011). It was reported that the
increase of MN frequency after gamma irradiation in medaka
fish with concentrations and durations. Könen and Cavas�
(2008) reported an increase in MN frequency after exposure
of trifluralin, and Treflan in the O. niloticus. As response to

atrazine, Cavas (2011) reported an increase in the induction
of MN in peripheral blood of Carassius auratus. In the present
study the micronucleus percentage is high in the monosex tila-
pia farms in comparison with the control. These results may be

due to the genotoxicity caused by the MT use in sex reversal
process especially the results which indicated the high quality
of water.

In the present study, methyltestosterone showed some alter-
ations (teardrop-like cells, sickle cells, swollen cells and vacuo-
lated cells) in erythrocytes of fishes from monosex farms in

comparison with the control farms. Such alterations have been
reported in previous studies in response to 4-nonylphenol
(Mekkawy et al., 2011), hypoxic conditions (Sawhney and
Johal, 2000), toxicants (Buckley et al., 1976), pesticides

(Adeyemo, 2007; Adedeji et al., 2009), gamma radiation
(Sayed et al., 2014), UVA exposure (Sayed et al., 2007,
2013), and heavy metals (Oloade and Oginni, 2010;

Adeyemo, 2007). Unequal distribution of hemoglobin is the
cause of vacuoles observed in erythrocytes (Ateeq et al.,
2002; Mekkawy et al., 2011; Bushra et al., 2002). The swelled

blood cells were recorded as signs of necrosis (Bushra et al.,
2002).

Rodriguez-Cea et al. (2003) reported that fish species are

more sensitive to genotoxic pollutants than others. In the
present work, Nile tilapia showed a higher degree of DNA
damage in the fish sampled from monosex farms observed in
the significant increase in micronuclei and the percentage of

apoptotic cells. These results are in line with the previous work



Figure 5 (a,b) The apoptotic cells of Assiut farms, (c,d) Alexandria farms, (e,f) Beheira farms and (g,h) Kafr EL-Sheikh farms in light

green color under the fluorescence microscope stained with Acridine Orange.
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Figure 6 Apoptotic, micronuclei and altered erythrocytes of Nile tilapia from Assiut and monosex farms. Data are presented as the

mean ± SE, (n= 6).
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(Osman et al., 2012), where a significant increase was found in

the frequencies of micronuclei in the blood of Nile tilapia
collected from the contaminated sites. The increased apoptosis
induction was in accordance with that obtained by (Christen
et al., 2013) after exposure to Ag-nanoparticles. Also, Khalil

et al. (2011) studied the molecular changes of the synthetic
steroid 17a-methyltestosterone on the liver of Nile tilapia;
O. niloticus and found that MT was able to induce DNA

fragmentation and molecular genetic variability.
In conclusion, the estimation of genotoxic effects is may be

due to MT use in fish farming. Although based on a relative

small data set, our study confirmed high sensitivity of Nile tila-
pia on using methyltestosterone as indicated by high apoptosis
and micronuclei.
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