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Microplastics (MPs) are an emerging threat to freshwater ecosystems with several 
ecotoxicological ramifications for fish. Microplastics (MPs) can adsorb heavy 
metals on their surfaces and increase their availability to aquatic organisms. 
The combined impact of lead and microplastics on fish has only been studied 
seldom utilizing a variety of markers. The present study aimed to evaluate the 
hematological, biochemical, and inflammatory signals (cytokines), as well as 
antioxidant enzymes in African catfish (Clarias gariepinus) exposed to lead (Pb) and 
MPs individually and combined for 15  days (acute toxicity experiment). The fish 
were split into four groups, the first of which was the control group. The second 
group received exposure to 1  mg/L of lead nitrate [Pb(NO3)2]. The third group was 
given 100  mg/L of MPs. A solution containing 100  mg/L of MPs and 1  mg/L of 
lead nitrate [Pb(NO3)2] was administered to the fourth group (the combination 
group). According to the findings, when MPs and Pb were combined for 15  days, 
the red blood cells (RBCs), thrombocytes, and lymphocytes were significantly 
reduced in comparison to the control fish. When compared to the control fish, 
the fish exposed to MPs and Pb alone or together showed a significant rise in 
blood interleukin-1β (IL-1β) and interleukin-6 (IL-6) cytokines. Both MPs and Pb 
exposure in catfish resulted in significant changes in the plasma electrolytes. The 
fish treated with MPs and Pb individually or in combination showed significant 
reduction in superoxide dismutase (SOD) and total antioxidant capacity (TAC) 
levels compared to the control group. The fish exposed to the combined action 
of MPs and Pb showed a considerable modification in all biochemical markers. 
The difference in the mean concentration of Pb (mg/L) between the fish exposed 
to Pb alone and the fish subjected to Pb and MPs combination was not statistically 
significant. In conclusion, according to this investigation, exposure to Pb caused 
an insignificant increase in Pb accumulation when MPs were present. However, 
co-exposure may result in anemia, cellular harm, extremely high levels of oxidative 
stress, and an inflammatory reaction.
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1. Introduction

Microplastic contamination has become a global issue as a result of industrialization and 
the increasing usage of plastic products. By 2030, it is projected that 53.000 million kilograms 
of plastic will have been manufactured globally (1). The discovery of plastic dominance in 
macro-debris demonstrated that the rise in plastic consumption will be consistent with plastic 
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pollution (2, 3). The macroplastics will inevitably break down and 
fragment to produce subsequent microplastics (secondary 
microplastics) (4). The major microplastics are the other type (primary 
microplastics) which are purposefully made small and are commonly 
utilized as a cleaner for self-hygiene products (5). Microplastics are 
found everywhere, from the surface of the earth to the open ocean. 
The majority of terrestrial microplastics come from residential effluent 
(6), which drains into the sea and rivers. Secondary microplastic 
production from terrestrial trash is approximately 22 folds greater 
than that from marine garbage (7). Estuaries and coastal environments 
are being heavily impacted by anthropogenic pressure in numerous 
regions of the world because of complex mixes of persistent organic 
pollutants (POPs), heavy metals, other known and undiscovered 
substances, and microplastics (8). Microplastics and heavy metals 
interact more easily since they both enter the aquatic environment 
through the same channels (wastewater discharges, rivers, or urban 
runoff) (9). Because MPs can modulate the utilization and toxicity of 
heavy metals through desorption mechanisms, their contact with 
plastic particles can be troublesome (10). As a result, it is concerning 
when MPs and heavy metals are present in ecosystems close to human 
activities (such as in mining sites) (11). When genuine and used PE 
particles were used to adsorb various metal ions in freshwater, it was 
found that the main factor influencing adsorption was the difference 
in ion concentration between the liquid phase (metal solution) and 
the solid phase (PE particles), and the metal ion concentration 
eventually reached equilibrium (12). Due to oxidation and weathering, 
the surface shape of aging particles changed, making it simple to 
assemble an electric charge and adsorb metal ions to establish charge 
balance (13). Moreover, the period that microplastics have been 
present in the fresh and marine water has a major effect on the 
adsorption capacity in addition to pH. Additionally, Brennecke et al. 
(14) attested the binding of fresh PS pellets and aged PVC pieces to 
several heavy metals during the course of 14 days of experimental 
manipulation. On the surface of the plastic particles, there were 800 
times more heavy metals than there are in saltwater. The particular 
surface area of the aged PVC fragments increased as a result of 
cracking and crushing, and the presence of attaching biomass on the 
surface of the particles boosted the behavior of adsorbing heavy metals.

Our earlier studies have shown that fish exposed to microplastic 
frequently experience adverse physiological and biochemical impacts, 
gastrointestinal scratches and obstructions, behavioral issues, 
histopathological changes, decreased mineral integration, 
neurotoxicity, reproduction disorder, and even mortality (15–24). Fish 
can be  harmed by additives found in microplastics such as 
polybrominated diphenyl ethers (PBDE), bisphenol A (BPA), 
nonylphenol (NP), and octylphenol (OP). Ingesting plastic additives 
can harm fish organs like the liver, kidney, and intestine through 
oxidative stress, physical damage, and inflammation (25).

The consequences of these interactions between heavy metals and 
microplastics can be antagonistic or synergistic effects (26). Although 
this is the case, classical threat evaluation has frequently focused on 
single-exposure investigation, which has resulted in an under- or 
overestimation of the potential harm that toxins may pose to aquatic 
life (27). Hence, assessing the interactions between various pollutants 
is particularly crucial for risk assessment. Khan et al. (28) observed 
that Danio rerio exposed to MPs that were treated with silver (Ag) had 
a higher fraction of intestinal Ag. Also, Luís et al. (8) found that the 

existence of microplastics in the water affected the immediate impact 
of Cr (VI) on early juvenile goby by reducing hunting efficiency and 
increasing fish oxidative harm. In the seabass, Dicentrarchus labrax, 
microplastics and mercury alone and in combination led to 
neurological damage, oxidative stress in the brain and muscle, and 
altered energy-related enzyme activity (29). In zebrafish, Danio rerio, 
polystyrene (PS) MPs promote cadmium accumulation (30); however, 
they have the reverse impact in discus fish (Symphysodonae 
quifasciatus) (31). According to a different study, greater polystyrene 
microplastic levels raise the toxicity of cadmium in zebrafish larvae 
while lower polystyrene microplastic levels reduce it (32). In the 
instance of copper, polyethylene (PE) MPs enhance Cu-induced 
oxidative harm and DNA deterioration in Prochilodus lineatus while 
having little effect on hepatic copper buildup (33). However, it has 
been found that concurrent exposure of Danio rerio larvae to copper 
and microplastic polymers causes neurological damage, alters 
behavioral patterns, and impairs growth and longevity (11, 34, 35). 
Additionally, polyvinyl chloride microplastic acts as a copper carrier, 
encouraging Cu accumulation in the liver of common carp (Cyprinus 
carpio) and intensifying inflammation (36). Zheng et al. (37) found 
that in the initial phases of exposed Danio rerio and their offspring 
that were not exposed, particulates rather than Zinc ions produced by 
ZnO NPs increased MPs toxicity.

Lead [Pb(II)] pollution of aquatic habitats is widespread as a result 
of the release of industrial lead-containing sewage, the accumulation 
of lead-containing airborne particles, and other factors (38). Several 
authors have reported on the toxicity of lead nitrate in fish (20, 39, 40).

Because of its vast range, ease of availability, and susceptibility to 
xenobiotics, catfish (Clarias gariepinus) are frequently utilized as fish 
bio-indicators (41). Furthermore, because of its all-devouring eating 
habits, tendency to live in sediment, and potential exposure to 
microplastics that could aggravate metal and pollutant accumulation, 
this species tends to accumulate more heavy metals (42).

In natural water bodies, the coexistence of MPs and Pb(II) is 
frequent and can affect the co-toxicity and migratory behavior of 
contaminants (43, 44). Little is known about the harmful consequences 
brought on by the combination of lead and microplastics in fish 
(45, 46).

The current study’s objective was to use various biomarkers 
(hematological, biochemical, and inflammatory signals (cytokines), as 
well as antioxidant enzymes) to examine the harmful effects of lead 
and microplastic exposures on catfish both singly and in combination.

2. Materials and methods

2.1. Chemicals

Toxemerge Pty Ltd. was where the MPs powder was purchased 
(Melbourne, Australia). A stock solution was created from the powder 
per the manufacturer’s instructions using filtered water (Milli-Q) and 
stored at 4°C in the dark. Before each usage, the stock solution (2.5 g 
MP/L) was sonicated. From this stock, more dilutions were made right 
away whenever the rising water was replaced. At Sigma-Aldrich, lead 
nitrate [Pb (NO3)2] was bought (St. Louis, Missouri, United States). 
The fresh stock solution included 1,000 mg of lead nitrate per liter of 
deionized water.
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2.2. Fish exposure

The Fish Biology and Pollution Laboratory in the Faculty of Science, 
Assuit University, received African catfish (C. gariepinus; weight 
250–300 g; length 20–25 cm) from an aquaculture farm. The fish were 
healthy and free of parasites, per AFS-FHS, 2007. The fish were put in 
100 L tanks with dechlorinated tap water and air pumps, the fish were 
acclimated for 2 weeks in a lab setting. Conductivity 5.8 ms/cm, pH 7.2, 
dissolved oxygen 8.6 mg L−1, temperature 27.5°C, and photoperiod 12:12 
light: dark were the physicochemical characteristics of the rearing water.

For each treatment, the fish were split into four groups, 30 fish for 
each group in triplicate. The first group was the control group. The 
second group was subjected to 1 mg/L Lead nitrate [Pb (NO3)2] 
according to Hamed et al. (22). The third group was subjected to 
100 mg/L MPs according to Hamed et al. (20). The fourth group (the 
combination group) was subjected to a solution containing a 
combination of 100 mg/L of MPs and 1 mg/L of lead nitrate 
[Pb(NO3)2]. After 15 days, blood was drawn from the caudal vein of 
six randomly chosen fish from each group, whose anesthesia had been 
administered with ice in order to reduce dissection strain (20, 22). The 
blood was then analyzed for lead concentration, hematological and 
biochemical parameters, as well as blood electrolytes concentration, 
antioxidant enzymes, and inflammatory signals (cytokines).

2.3. Hematological indices

According to Fazio (47), various hematological indices such as red 
blood cells (RBC’s)and white blood cells [WBC’s] count; Differential 
WBC’s; blood Platelets; Hematocrit level (Hct), Hemoglobin level 
(Hb); Erythrocyte indices including mean corpuscular hemoglobin 
(MCH), Mean corpuscular volume (MCV), and mean corpuscular 
hemoglobin concentration (MCHC), were determined by using 
automated technical analyzer (BC-2800 from Mindray).

2.4. Inflammatory signals (cytokines)

The cytokines (Interleukin-6 and Interleukin-1β) were measured 
in the serum using commercially available, highly sensitive ELISA kits 
(Human Ultrasensitive, BioSource International Inc.).

2.5. Blood electrolytes

With the aid of atomic absorption spectroscopy (Model SensAA 
G3000, GBC Scientific Equipment Pty Ltd., Dandenong, Victoria 3175, 
Australia), blood electrolytes (HCO3, Na+, K+, Cl−, Fe+2, and Ca+2) were 
determined in serum (48). The wavelengths of the elemental ions were 
chosen to have the proper sensitivity for the concentration range.

2.6. Antioxidant parameters and Lipid 
peroxidation

The activities of superoxide dismutase (SOD), total antioxidant 
capacity (TAC), and glutathione S-transferase (GST) were measured 
in serum samples using the methods of Koracevic et al., Nishikimi 

et al., and Sayed et al. (49–51), respectively. The malondialdehyde 
(MDA) level was determined using a thiobarbituric acid reaction (52).

2.7. Biochemical parameters

According to Bricknell et al. (53), the blood was spun for 10 min 
at 2,147 × g (RCF) to separate the blood serum for the biochemical 
examination. A spectrophotometer T80+ UV/VIS was used to 
examine the extracted serum (Bioanalytical Diagnostic Industry, 
Co.). During the experiments, a number of biochemical variables 
were tracked, including (glucose, total protein, albumin, globulin, 
A/G ratio, liver function, and kidney function).

2.8. Lead residue

The serum samples were put into the atomic absorption 
spectroscopy after being diluted in the autosampler in the ratio 1 + 1 
with 1% v/v nitric acid containing 0.02% v/v of Cetrimonium chloride 
(CTAC; Model SensAA G3000, GBC Scientific Equipment Pty Ltd., 
Dandenong, Victoria 3,175, Australia) (54).

2.9. Statistical analysis

Using a one-way analysis of variance, all data were checked for 
normality (Shapiro–Wilk test) and homogeneity of variances 
(Levene’s test; 55). Whether the variance was equal or unequal, 
Fisher’s LSD and Dunnett’s post hoc tests were employed to compare 
the various groups. p  < 0.05 values were regarded as 
significantly different.

2.10. Ethical statement

Experimental setup and fish handling were approved by the 
Research Ethics Committee (REC) of the Molecular Biology Research 
& Studies Institute (MBRSI), Assuit University, Assuit, Egypt (No. 
IORG0010947-22-2023-0026).

3. Results

3.1. Hematological indices

Exposing African catfish to Pb displayed a significant decline in 
RBC count (p = 0.015), Hb (p = 0.003), Ht (p = 0.001), thrombocytes 
(p = 0.000), and lymphocytes (p = 0.000), whereas other differential 
leukocyte counts [neutrophils (p = 0.000), monocytes (p = 0.001), 
and eosinophils (p = 0.000)] recorded an increase compared with 
the fish in the control group as shown in Table 1. Although the fish 
in the group exposed to MPs exhibited a significant rise in both Ht 
(p = 0.020) and MCV (p = 0.010), the interaction of both MPs and 
Pb for 15 days exhibited a remarkable reduction in the fish RBCs 
(p = 0.033), thrombocytes (p = 0.009), while differential leukocyte 
counts [neutrophils (p  = 0.000), monocytes (p  = 0.015) and 
eosinophils (p = 0.017)] showed an increase compared to the control 
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TABLE 2 Single and combined effect of MPs and Pb on the electrolyte 
balance parameters of African catfish (Clarias gariepinus).

Control Pb MPs MPs  +  Pb

HCO3(μg/mL) 19.8 ± 1.1a 18 ± 0.4a 14.5 ± 0.3b 13.3 ± 0.5b

Na+ (μg/mL) 126 ± 1.5a 138 ± 3.9b 120 ± 1.3ac 117 ± 0.5c

K+ (μg/mL) 4.1 ± 0.1a 3.7 ± 0.1b 4.1 ± 0.1a 4.4 ± 0.1c

Cl− (μg/mL) 93 ± 2.6a 99 ± 1.8a 82 ± 3.3b 84 ± 2.1b

Fe+2 (μg/mL) 15.5 ± 0.4a 17 ± 0.6b 15.6 ± 0.5a 17.2 ± 0.4b

Ca+2 (μg/mL) 51.4 ± 0.7a 55 ± 0.6b 49 ± 0.5c 47 ± 0.4d

Anion gap 14 ± 2.8a 22 ± 5a 24.2 ± 4a 20.4 ± 2.6a

Data are represented as means ± SE. Values with different superscript letters in the same row 
for each parameter are significantly different (P < 0.05).

fish. Leukocytes’ count (WBCs) reported no change among the 
experimental groups (0.878 ≤ p ≥ 0.130; Table 1).

3.2. Inflammatory signals (cytokines)

The fish exposed to single and combined treatment of MPs and Pb 
showed a significant enhancement (p = 0.000, p = 0.000, respectively) 
in serum IL-1β and IL-6 cytokines by 1.8, 1.2, 1.4, and 1.2, 1.0, 1.1 
folds, respectively, as compared to the control fish. Among the 
treatment groups, the highest levels of both IL-1β and IL-6 were 
displayed in the fish exposed to lead (Figure 1).

3.3. Electrolyte balance parameters

Plasma electrolytes including Na+, Fe+2, and Ca+2 were increased 
markedly (p  = 0.002, p  = 0.036, p  = 0.001, respectively) following 
15 days of Pb exposure of the fish. Meanwhile, the levels of Na+, K+, and 
Fe+2 remained unchanged in the fish exposed to MPs (p  = 0.091, 
p = 0.866, p = 0.850, respectively). The fish exposed to both MPs and 
Pb recorded a significant alteration (Na+:p = 0.012, Fe+2: p = 0.022, Ca+2: 
p = 0.000, K+: p = 0.041, HCO3

−: p = 0.000, Cl−: p = 0.024) overall the 
plasma electrolytes. However, the anion gap showed non-significant 
differences (0.807 ≤ p ≥ 0.074) among the experiment groups (Table 2).

3.4. Antioxidant parameters and lipid 
peroxidation

Compared to the control fish, the levels of SOD and TAC exhibited 
a notable decline (p = 0.005 and p = 0.000, respectively) in the fish 
subjected to individual and combined treatment of MPs and Pb by 
25%, 18%, 11%, and 25%, 23%, 25%, respectively. While lipid 

peroxidation showed a significant increase in lead (p = 0.000) and the 
combination group (MPs and lead; p = 0.000). The activity of GST also 
recorded a non-significant reduction (0.198 ≤ p ≥ 0.081) among the 
experiment groups (Figure 2).

3.5. Biochemical parameters

Table 3 shows the effect of Pb, MPs, and their combined effect on 
the biochemical indices of African catfish for 15 days. Total protein 
levels recorded a remarkable elevation (p = 0.000) in the fish subjected 
to individual and combined treatment of MPs and Pb compared to 
the control group. AST showed a significant increase in the 
combination group compared to the remaining groups (p = 0.001), 
while ALT showed non-significant changes during the study 
(0.654 ≤  p  ≥ 0.088) compared to the control group. The other 
biochemical indices displayed a significant alteration (p = 0.000) in 
the fish exposed to the combined effect of MPs and Pb.

3.6. Pb concentration in blood serum

When compared to the fish exposed to MPs separately or as part 
of a control group, the mean concentration of Pb (mg/L) in the 

TABLE 1 Single and combined effect of Pb and MPs on the hematological 
parameters of African catfish (Clarias gariepinus).

Control Pb MPs MPs  +  Pb

(RBC’s; ×106/mm3) 3.2 ± 0.04a 3 ± 0.1b 3.02 ± 0.04ab 3 ± 0.1b

Hemoglobin  

(Hb; g/dL)

9 ± 0.14a 8 ± 0.3b 9 ± 0.3a 8.1 ± 0.1ab

Ht (PCV; %) 35.4 ± 0.1a 33.3 ± 0.7b 37 ± 0.2c 35.3 ± 0.1a

MCV (μm3) 116 ± 2a 112 ± 3a 121 ± 1.8b 117 ± 2.2ab

MCH (Pg) 28.3 ± 0.3a 26 ± 0.8b 29 ± 0.9a 28 ± 0.5ab

MCHC (%) 25.4 ± 0.5a 23.1 ± 1.1a 24 ± 0.7a 24 ± 0.5a

Thrombocytes 

(×103/mm3)

213 ± 0.5a 200 ± 0.9b 217 ± 2.8a 206 ± 1.3c

(WBC’s; ×103/mm3) 11 ± 0.2a 11.1 ± 0.3a 11 ± 0.3a 10.5 ± 0.2a

Neutrophils (%) 11 ± 0.3a 16 ± 0.3b 11.3 ± 0.3a 14 ± 0.3c

Lymphocyte (%) 85 ± 0.5a 76 ± 0.3b 84 ± 0a 80 ± 0.3c

Monocyte (%) 3 ± 0.3a 4.3 ± 0.2b 3 ± 0.3a 4 ± 0.3b

Eosinophils (%) 2 ± 0a 5 ± 0.3b 2 ± 0.0a 3 ± 0.3c

Data are represented as means ± SE. Values with different superscript letters in the same row 
for each parameter are significantly different (P < 0.05).

FIGURE 1

Single and combined effect of Pb and MPs on the immunological 
parameters of African catfish (Clarias gariepinus).
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serum of the fish exposed to Pb alone and Pb/MPs combination 
significantly increased (p = 0.000; Figure 3). The difference between 
the fish exposed to Pb alone and the fish subjected to Pb and MPs 
combination was not statistically significant (1.00 ≤  p  ≥ 0.094; 
Figure 3).

4. Discussion

The present study reported an adverse health effect in African 
catfish induced by the exposure of Pb and MPs individually or 
combined. In freshwater, fish are exposed to different types of 
pollutants at once. Out of all the documented water contaminants, 

heavy metals are the greatest global threat to fish health and food 
safety (56). Microplastics are emerging environmental pollutants. Yet, 
the impact of the combination of heavy metals and MPs on freshwater 
fish has not been well considered.

Hematological parameters are important in fish health status 
markers under stressful circumstances (24). RBCs are delicate blood 
constituents, and several structural and morphological abnormalities 
may be related to the cellular penetration of metal (57). The exposure of 
Pb individually or combined with MPs displayed anemia in African 
catfish. This may be due to hemolysis, dilution of heme, structural 
change in RBCs, and Hb synthesizing enzymes inhibition or impaired 
utilization of iron for erythropoiesis (58). In the present study, in 
comparison to control fish, fish subjected to MPs had considerably 

FIGURE 2

Single and combined effect of MPs and Pb on (A) GST, (B) SOD, (C) TAC, and (D) LPO of African catfish (Clarias gariepinus).

TABLE 3 Single and combined effect of MPs and Pb on the biochemical parameters of African catfish (Clarias gariepinus).

Control Pb MPs MPs  +  Pb

ALT (μ/L) 17.4 ± 0.4a 16.9 ± 0.2a 17.5 ± 0.9a 19.8 ± 1.4a

AST (μ/L) 34 ± 0.4a 33.2 ± 0.3a 33.9 ± 0.3a 36.6 ± 0.5b

Glucose (mg/dl) 90.7 ± 1.6a 75.4 ± 0.5b 81.6 ± 3.7ab 100 ± 0.8c

Creatinine (mg/dL) 0.35 ± 0.01a 0.34 ± 0.01a 0.36 ± 0.01a 0.47 ± 0.01b

Urea (mmol/L) 22.6 ± 0.4a 22.9 ± 0.3ab 23.8 ± 0.2ab 24.3 ± 0.8b

Total protein (mg/dL) 3.4 ± 0.1a 4.5 ± 0.04b 4.2 ± 0.04c 4.3 ± 0.02c

Albumin (mg/dL) 1.7 ± 0.1a 1.5 ± 0.1a 1.5 ± 0.1a 1.1 ± 0.0b

Globulin (g/dL) 3.2 ± 0.03a 3.2 ± 0.1a 2.6 ± 0.1b 2.4 ± 0.1b

A\G ratio 0.51 ± 0.02ab 0.46 ± 0.02ac 0.57 ± 0.03b 0.43 ± 0.02c

Data are represented as means ± SE. Values with different superscript letters in the same row for each parameter are significantly different (P < 0.05).
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lesser levels of MCH, MCHC, and Hb, which confirm an anemic 
condition. Regarding the increased levels of Fe + in serum, hypochromic 
microcytic anemia is assured. MCHC is used to indicate the swelling of 
RBCs (59). The influx of immature RBCs with altered Hb concentration 
into the circulation can disturb the MCHC and reduce Hb concentration 
in blood serum (60). The present findings additionally support the 
hypothesis that hemodilution is a possible reason for Hb content decline 
in fish exposed to Pb. Similar findings were cited in fish subjected to 
metals (61, 62). On the other hand, the Fe abundance in the blood of 
fish exposed to MPs can enhance Fenton’s reaction, which generates 
more free radicals via the oxidation of ferrous into ferric (63). Heavy 
metals and MPs exposure caused a significant reduction in the 
haematological indices in many fish species (16, 18, 20, 22). Although, 
the WBCs showed no change among the treated groups, the neutrophil-
to-lymphocyte ratio of fish exposed to Pb individually or combined with 
MPs reported a significant increase, indicating the progression of 
systemic inflammation and immunological responses of fish (64).

Both lymphocyte and neutrophil count variations indicate 
immunological changes in fish (30). While immunosuppression 
effects are manifested by high levels of anti-inflammatory cytokines 
and lymphocyte apoptosis. Here, lymphopenia occurs as a continuous 
influx of immature neutrophils into the blood (65), hence, our study 
anticipates that fish exposed to Pb and MPs suffer from tissue damage, 
which is characterized by increased counts of neutrophils and the 
release of pro-inflammatory cytokines, oxidizing enzymes, and 
reactive oxidative species (ROS; 66). The pro-inflammatory cytokines 
IL-1β and IL-6 are specific for inflammatory responses and several 
cellular processes [including homeostasis, and cell development, and 
correlated to autologous immune metabolism (67)]. Both Pb and MPs 
exposure induced homeostasis disturbance and pro-inflammatory 
damage in African catfish expressed by enhanced levels of serum 
cytokines, which is a typical immune response in inflammation and 
cellular damage (68). Once the cellular homeostasis is interrupted by 
diseases or tissue damage, interleukins trigger immediate immune 
responses against this emergent stressor. However, excessive 
interleukin synthesis has pathological consequences such as serious 
systemic inflammatory response and immune diseases (69). Wang 
et al. (70) documented similar inflammatory indications, verified by 

a higher level of IL-1β expression in hybrid snakehead fish exposed to 
Nano\MPs and cadmium.

In fish, the concentrations of electrolytes in the bodily fluid are 
necessary for the dynamic regulation of water inflow and ion outflow. 
The electrolyte imbalance examines the overall health of fish and 
serves as a bio-indicator of environmental stresses (23). Contaminants 
have a toxic effect on the fish gills’ structure and permeability and alter 
the osmoregulatory dysfunction (71). African catfish exposed to Pb 
and MPs individually or combined recorded an electrolyte balance 
disturbance. Previous studies reported the same disturbance of serum 
electrolytes in fish exposed to metals (72, 73). McCarty and Houston 
(74) documented that lower levels of Na+ and Cl− in plasma were 
associated with higher levels in fish tissue. Therefore, the present 
enhancement of serum electrolytes may be related to lower levels in 
fish tissues, by means of compensation to reduce the stress of Pb. On 
the other hand, plasma Na+ and Cl− ions in African catfish exposed to 
MPs individually or combined with Pb reported a significant drop. 
Lower levels of Na+ may point to higher epithelial permeability, which 
disturbs the ion exchange in gills; increase the loss of Na+ in the water 
with inhibition of Na+ uptake (75, 76). Regarding our biochemical 
alterations, renal function impairment may be involved in Na+ loss 
(77). The observed decrease in plasma K+ levels may be caused by the 
gill region’s Pb-sulfhydryl group binding, which can inhibit the 
ATPase (78). ATPase has a crucial role in ion homeostasis in the gills, 
while pollutants have a disturbing effect on the ATPase system and 
osmoregulation in fish (79). The current elevation of plasma K+ levels 
in the combination group could possibly be due to the destruction of 
erythrocytes which manifested a lower RBC count in MP exposure 
groups, which likely caused the discharge of K+ (80). Generally, higher 
Ca+2 levels can trigger the production of xanthine oxidase and 
phospholipase enzymes, which promote the production of both the 
superoxide anion and peroxide radical (81). Consequently, higher 
Ca+2 levels persuaded by Pb and MPs exposure may play a role in the 
oxidative stress demonstrated in African catfish. Prakash and Verma 
(73) documented alterations in electrolytes level besides several 
physiological impairments in fish exposed to MPs. Different sizes and 
shapes of MPs have induced tissue injuries, inflammation, organ 
dysfunction, and metabolic alteration in exposed fish (82).

Both SOD and GST activities were reduced along with the total 
antioxidant capacity (TAC) in the treated groups compared to the 
control group, especially in the Pb-exposed groups, signifying a 
disturbance in the redox homeostasis. The antioxidant system is 
deranged and fails to suppress the emerging oxidative stress and the 
allied oxidative damage. The antioxidant defense system plays a 
significant part in the response of fish to different stressors (83). SOD 
is a key antioxidant enzyme in eliminating excess ROS; it converts 
superoxide radicals into hydrogen peroxide (84). Xenobiotic and 
endobiotic metabolite removal depends heavily on glutathione 
S-transferases (GST). Increased GST activity is a preventive 
mechanism against oxidative stress and other negative effects when 
metals enter an organism (85). According to Srikanth et al. (86), even 
a non-significant increment of ROS in fish exposed to metals could 
induce serious injuries. Total antioxidant capacity (TAC) is a reliable 
indicator mirroring the general status of the antioxidant system 
(including enzymatic and non-enzymatic antioxidants) (87). In fish, 
MPs exposure can provoke the over-production of reactive oxygen 
species (ROS), which triggers the antioxidant system and begins to 

FIGURE 3

Lead (Pb) concentration (mg/L or ppm) in the blood of African catfish 
(Clarias gariepinus) exposed to the single and combined effect of 
MPs and Pb.
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cause cellular damage (84). Metal exposure also stimulates a cellular 
preventive mechanism against the associated oxidative stress and 
other negative consequences via the activation of the enzymatic 
antioxidant system (56). Moreover, MPs-heavy metal complexes were 
found to alter the antioxidant capacity and cause cellular oxidative 
damage in fish, while the severity of the oxidative damage is correlated 
to MPs. Fish have divergent responses against MPs, metal, or both, 
highlighting the contribution of many physiological processes, which 
can impair redox hemostasis, cause oxidative stress, and cellular 
damages (11, 34, 35). However, more research is needed in order to 
understand these inconsistent responses and the processes involved 
in the antioxidant system response to metals and MPs.

In consonance with these findings, the present study 
documented that exposure to Pb and MPs for 2 weeks led to 
biochemical alterations in African catfish, which may be assigned to 
their direct noxious effects. The physiological indices that assess the 
function of organs of African catfish such as; urea, AST, glucose, and 
total protein displayed a significant enhancement after exposure to 
Pb and/ or MPs for 2 weeks. Similar variations were detected in fish 
exposed to MPs and/or nickel (88). Both ALT and AST are significant 
indexes of liver function. In our study, the combination MPs + Pb 
exposure group exhibited higher serum AST levels, indicative of 
hepatic damage concurrently with the recorded oxidative stress (89). 
Generally, blood carbohydrates and proteins may be metabolized for 
energy in stress, leading to a significant decline in them (31). 
Carbohydrate metabolism is associated with advanced levels of 
blood glucose due to elevated catecholamine levels, which stimulates 
hepatic gluconeogenesis and glycogenolysis. Hence, higher levels of 
blood glucose could be a compensatory mechanism, where glucose 
is used as a source of energy to nullify the toxic impacts of Pb and 
MPs (89). Enhanced levels of serum urea in African catfish 
challenged by combination (MPs and Pb) is another evidence of 
energy intake deficiency, indicating higher amino acids’ 
gluconeogenesis in the liver that subsequently increases serum 
ammonia which eventually converted into urea (90). Reduced 
albumin, globulin, and A/G ratio may refer to amino acid 
malabsorption in the fish exposed to Pb + MPs, due to oxidative or 
physical damage to the intestinal lining cells. The function and 
structure of proteins also could be altered due to the contact of MPs 
(91). Fish exposed to MPs recorded similar reductions in serum total 
protein, albumin, and globulin (10).

Moreover, through the detoxification and filtration process to 
eliminate toxins from the body, Pb was reported to cause kidney and 
liver dysfunction in fish. In line with our findings, Rahman et al. (92) 
reported kidney dysfunction and reduced protein synthesis in Nile 
tilapia exposed to Pb toxicity. Akturk et al. (93) also documented 
kidney denaturation (inferior glomerular filtration activity and urea 
excretion capacity) in fish exposed to Pb toxicity.

Among the hazardous effects of MPs on aquatic animals, MPs have 
reported a strong affinity for adsorbing heavy metals (94). Thus, MPs are 
considered as an alternative path for the accumulation and transport of 
heavy metals from the environment to the organisms. More 
consideration should be given to these new pollutants due to the toxicity 
of heavy metals and the effects MPs have on the environment. The 
surface characteristics of MPs allow the direct adsorption of metal ions 
via the charged sites or neutral regions to form complexes (12). Although 
the fish exposed to MPs combined with metals reported many 

physiological and histological alterations (20, 46), there is an ongoing 
debate about the possible effects of MPs on heavy metals accumulation 
and toxicity. Contrary to what was anticipated, the accumulation of Pb 
in fish exposed to a combination (Pb and MPs) was lower than in fish 
exposed to Pb individually (not statistically significant). In accordance 
with our result, the accumulation of cadmium in fish exposed to a 
combination (cadmium and MPs) was lower than in fish exposed to 
cadmium individually in discus fish, Symphysodonae quifasciatus (31). 
MPs particles can aggregate upon contact with pollutants such as metals, 
forming larger particle sizes with smaller surfaces and fewer adsorption 
sites, limiting the bioavailability and toxicity of metals to the challenged 
organisms (95). According to Zeng et al. (96), the fish exposed to MPs 
combined with heavy metals has recorded a significant reduction in MPs 
accumulation in the fish’s gills, as compared to fish challenged with MPs 
individually. MP particles showed a self-adherent and aggregation 
behavior when combined with heavy metals on the gill filaments. 
However, the fish’s body increases mucus secretion through the gills 
when it detects the physiological changes induced by MPs with heavy 
metals accumulation in the gills. This response controls the gills’ pressure 
to expel both MPs and heavy metals from the body (97). Moreover, the 
absorption of heavy metals on MPs surface involves several forces, 
including the π-π interactions, oxygen-containing functional groups, and 
hydrogen bonding which decrease the bioavailability of heavy metals 
when digested (98). Ingestion of MPs has alleviated the toxicity of heavy 
metals by absorption, which lowers the bioavailability and accumulation 
of heavy metals in earthworm gut (99). Moreover, lower Pb in serum 
may be related to the large molecular size of aggregated combination 
(MPs and Pb) could be indigestible to fish. Kim et al. (100) reported that 
among different sizes of polyethylene MPs, fish ingested a limited size 
range. Ingestion of MPs poses serious physical and/or chemical damage 
to fish due to their small size. The physical damage depends on the size 
and aggregation of MPs, while the chemical damage is caused by the 
polymer additives and absorbed pollutants released inside the fish (101). 
MPs can interrupt digestion and energy balance in fish, along with 
affecting nutrient uptake (102). The reported lower accumulation of Pb 
and energy deficit in African catfish exposed to combination (MPs and 
Pb) give rise to malnutrition due to the physical damage or blockage of 
the digestive tract caused by combination MPs + Pb aggregation. This is 
the primary physical effect of relatively larger MP particles (103).

One of the drawbacks is that lead concentrations in numerous 
organs, including the muscles, liver, and kidneys, are not measured. 
Additionally, there is no accepted way of determining the level of 
microplastics in earlier organs. We anticipate opportunities to assess 
the concentrations of different elements with microplastics in other 
fish species (e.g., Tilapia, Zebrafish, Carp, etc.,) or use different metals 
(e.g., Hg, Cu, Cd, etc.,) because each species of fish or metals can react 
or behave in a different way which gives different results. For example, 
In zebrafish, Danio rerio, polystyrene (PS) MPs promote cadmium 
accumulation (30); however, they have the reverse impact in discus 
fish (Symphysodonae quifasciatus) (31).

5. Conclusion

Generally, the present study emphasizes the effects of sub-toxic 
doses of Pb and MPs individually and combined for 15 days on 
African catfish. The hematological and biochemical alterations along 
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with oxidative stress were recorded in fish. MPs increased the 
physiological and cytotoxic effects of Pb, although MPs alleviated the 
accumulation of Pb in the serum of African catfish. So, we anticipate 
that fish are exposed to the physical damage of MPs more than the 
chemical damage when combined with Pb.
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