62 research outputs found

    Linear and conformational determinants of visceral leishmaniasis diagnostic antigens rK28 and rK39.

    Get PDF
    BACKGROUND: Recombinant antigens rK39 (based on kinesin sequence) and rK28 (comprising kinesin and HASPB sequences) are a mainstay of serological diagnosis for visceral leishmaniasis (VL). However, their key epitopes and the significance of their structural conformation are not clearly defined, particularly in relation to reported cross-reactivity with sera from patients with malaria, schistosomiasis, and tuberculosis. METHODS: To assess the effect of conformation on antigenicity with Sudanese VL sera, antigens rK39 and rK28 were heat-denatured at 95 °C for 10 min and then assayed by enzyme-linked immunosorbent assay (ELISA). Amino acid sequences of rK39 and rK28 were submitted to NCBI BLASTp to assess homology with Plasmodium, Schistosoma, and Mycobacterium. RESULTS: Heat denaturation significantly diminished the antigenicity of rK39 compared to non-denatured antigen (P = 0.001), but not for rK28 (P = 0.275). In BLASTp searches, HASPB sequences from rK28 had similarities with sequences from Plasmodium, encompassing software-predicted B-cell epitopes. CONCLUSIONS: The antigenicity of rK39 appears to be dependent on structural conformation, whereas that of rK28 depends on linear sequence. HASPB sequence homology with Plasmodium may be responsible for the reported cross-reactivity of rK28 with malaria sera. Further work is warranted to refine the specificity of these antigens

    Simplified molecular detection of Leishmania parasites in various clinical samples from patients with leishmaniasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular methods to detect <it>Leishmania </it>parasites are considered specific and sensitive, but often not applied in endemic areas of developing countries due to technical complexity. In the present study isothermal, nucleic acid sequence based amplification (NASBA) was coupled to oligochromatography (OC) to develop a simplified detection method for the diagnosis of leishmaniasis. NASBA-OC, detecting <it>Leishmania </it>RNA, was evaluated using clinical samples from visceral leishmaniasis patients from East Africa (n = 30) and cutaneous leishmaniasis from South America (n = 70) and appropriate control samples.</p> <p>Results</p> <p>Analytical sensitivity was 10 parasites/ml of spiked blood, and 1 parasite/ml of culture. Diagnostic sensitivity of NASBA-OC was 93.3% (95% CI: 76.5%-98.8%) and specificity was 100% (95% CI: 91.1%-100%) on blood samples, while sensitivity and specificity on skin biopsy samples was 98.6% (95% CI: 91.2%-99.9%) and 100% (95% CI: 46.3%-100%), respectively.</p> <p>Conclusion</p> <p>The NASBA-OC format brings implementation of molecular diagnosis of leishmaniasis in resource poor countries one step closer.</p

    Significantly lower anti-Leishmania IgG responses in Sudanese versus Indian visceral leishmaniasis.

    Get PDF
    BACKGROUND: Visceral leishmaniasis (VL), a widely distributed systemic disease caused by infection with the Leishmania donovani complex (L. donovani and L. infantum), is almost always fatal if symptomatic and untreated. A rapid point-of-care diagnostic test for anti-Leishmania antibodies, the rK39-immunochromatographic test (rK39-ICT), has high sensitivity and specificity in South Asia but is less sensitive in East Africa. One of the underlying reasons may be continent-specific molecular diversity in the rK39 antigen within the L. donovani complex. However, a second reason may be differences in specific IgG anti-Leishmania levels in patients from different geographical regions, either due to variable antigenicity or immunological response. METHODOLOGY/PRINCIPAL FINDINGS: We determined IgG titres of Indian and Sudanese VL patients against whole cell lysates of Indian and Sudanese L. donovani strains. Indian VL patients had significantly higher IgG titres against both L. donovani strains compared to Sudanese VL patients (p<0.0001). Mean reciprocal log10 50% end-point titres (1/log10t50) were i) 3.80 and 3.88 for Indian plasma and ii) 2.13 and 2.09 for Sudanese plasma against Indian and Sudanese antigen respectively (p<0.0001). Overall, the Indian VL patients therefore showed a 46.8-61.7 -fold higher mean ELISA titre than the Sudanese VL patients. The higher IgG titres occurred in children (<16 years old) and adults of either sex from India (mean 1/log10t50: 3.60-4.15) versus Sudan (mean 1/log10t50: 1.88-2.54). The greatest difference in IgG responses was between male Indian and Sudanese VL patients of ≥ 16 years old (mean 1/log10t50: 4.15 versus 1.99 = 144-fold (p<0.0001). CONCLUSIONS/SIGNIFICANCE: Anti-Leishmania IgG responses among VL patients in Sudan were significantly lower than in India; this may be due to chronic malnutrition with Zn(2+) deficiency, or variable antigenicity and capacity to generate IgG responses to Leishmania antigens. Such differential anti-Leishmania IgG levels may contribute to lower sensitivity of the rK39-ICT in East Africa

    Epidemiological and molecular investigation of resurgent cutaneous leishmaniasis in Sudan.

    Get PDF
    OBJECTIVES: Local health personnel have drawn attention to an apparent increase in incidence and severity of cutaneous leishmaniasis (CL) in Sudan. The objective of this study was to investigate CL burden and surveillance. METHODS: Surveillance data were compiled from the KalaCORE programme, Leishmania coordinators in Northern Kordofan and Southern Darfur, and Khartoum Dermatology Hospital. CL lesions were sampled from 14 suspected cases from Northern Kordofan and the Hospital for Tropical Diseases in Omdurman. PCR-restriction fragment length polymorphism analysis and multilocus sequencing were used to characterize the disease agent. RESULTS: All sites reported substantial increases from 2014 to 2016/7, far exceeding World Health Organization case reports for 2014, consistent with a widespread outbreak. Single seasonal peak incidence was observed, except for two peaks in Southern Darfur. In Northern Kordofan, the odds ratio for CL in the 35-44 years age group was 2.6 times higher than in the >45 years age group (p<0.0001); in Southern Darfur, the OR was 2.38 greater in males than females (p<0.0001). Lesions included severe presentations, despite chemotherapy. Leishmania major was identified as the agent. CONCLUSIONS: Active surveillance is required to understand the extent of CL in Sudan, as well as training to standardize surveillance, diagnosis, reporting, and quality control. Point-of-care rapid diagnosis would be valuable. Genotyping and phenotyping are required to monitor the emergence of pathogenic strains, drug resistance, outbreaks, and changes in severity

    Detection of Immunoglobulin G1 Against rK39 Improves Monitoring of Treatment Outcomes in Visceral Leishmaniasis.

    Get PDF
    BACKGROUND: Visceral leishmaniasis (VL), caused by the Leishmania donovani complex, is a fatal, neglected tropical disease that is targeted for elimination in India, Nepal, and Bangladesh. Improved diagnostic tests are required for early case detection and for monitoring the outcomes of treatments. Previous investigations using Leishmania lysate antigen demonstrated that the immunoglobulin (Ig) G1 response is a potential indicator of a patient's clinical status after chemotherapy. METHODS: IgG1 or IgG enzyme-linked immunosorbent assays (ELISAs) with rK39 or lysate antigens and novel IgG1 rK39 rapid diagnostic tests (RDTs) were assessed with Indian VL serum samples from the following clinical groups: paired pre- and postchemotherapy (deemed cured); relapsed; other infectious diseases; and endemic, healthy controls. RESULTS: With paired pre- and post-treatment samples (n = 37 pairs), ELISAs with rK39- and IgG1-specific conjugates gave a far more discriminative decrease in post-treatment antibody responses when compared to IgG (P < .0001). Novel IgG1 rK39 RDTs provided strong evidence for decreased IgG1 responses in patients who had successful treatment (P < .0001). Furthermore, both IgG1 rK39 RDTs (n = 38) and ELISAs showed a highly significant difference in test outcomes between cured patients and those who relapsed (n = 23; P < .0001). RDTs were more sensitive than corresponding ELISAs. CONCLUSIONS: We present strong evidence for the use of IgG1 in monitoring treatment outcomes in VL, and the first use of an IgG1-based RDT using the rK39 antigen for the discrimination of post-treatment cure versus relapse in VL. Such an RDT may have a significant role in monitoring patients and in targeted control and elimination of this devastating disease

    Isolation and characterisation of Leishmania donovani protein antigens from urine of visceral leishmaniasis patients.

    Get PDF
    Diagnosis of visceral leishmaniasis (VL) relies on invasive and risky aspirate procedures, and confirmation of cure after treatment is unreliable. Detection of Leishmania donovani antigens in urine has the potential to provide both a non-invasive diagnostic and a test of cure. We searched for L. donovani antigens in urine of VL patients from India and Sudan to contribute to the development of urine antigen capture immunoassays. VL urine samples were incubated with immobilised anti-L. donovani polyclonal antibodies and captured material was eluted. Sudanese eluted material and concentrated VL urine were analysed by western blot. Immunocaptured and immunoreactive material from Indian and Sudanese urine was submitted to mass spectrometry for protein identification. We identified six L. donovani proteins from VL urine. Named proteins were 40S ribosomal protein S9, kinases, and others were hypothetical. Thirty-three epitope regions were predicted with high specificity in the 6 proteins. Of these, 20 were highly specific to Leishmania spp. and are highly suitable for raising antibodies for the subsequent development of an antigen capture assay. We present all the identified proteins and analysed epitope regions in full so that they may contribute to the development of non-invasive immunoassays for this deadly disease

    Refining wet lab experiments with in silico searches: A rational quest for diagnostic peptides in visceral leishmaniasis.

    Get PDF
    BACKGROUND: The search for diagnostic biomarkers has been profiting from a growing number of high quality sequenced genomes and freely available bioinformatic tools. These can be combined with wet lab experiments for a rational search. Improved, point-of-care diagnostic tests for visceral leishmaniasis (VL), early case detection and surveillance are required. Previous investigations demonstrated the potential of IgG1 as a biomarker for monitoring clinical status in rapid diagnostic tests (RDTs), although using a crude lysate antigen (CLA) as capturing antigen. Replacing the CLA by specific antigens would lead to more robust RDTs. METHODOLOGY: Immunoblots revealed L. donovani protein bands detected by IgG1 from VL patients. Upon confident identification of these antigens by mass spectrometry (MS), we searched for evidence of constitutive protein expression and presence of antigenic domains or high accessibility to B-cells. Selected candidates had their linear epitopes mapped with in silico algorithms. Multiple high-scoring predicted epitopes from the shortlisted proteins were screened in peptide arrays. The most promising candidate was tested in RDT prototypes using VL and nonendemic healthy control (NEHC) patient sera. RESULTS: Over 90% of the proteins identified from the immunoblots did not satisfy the selection criteria and were excluded from the downstream epitope mapping. Screening of predicted epitope peptides from the shortlisted proteins identified the most reactive, for which the sensitivity for IgG1 was 84% (95% CI 60-97%) with Sudanese VL sera on RDT prototypes. None of the sera from NEHCs were positive. CONCLUSION: We employed in silico searches to reduce drastically the output of wet lab experiments, focusing on promising candidates containing selected protein features. By predicting epitopes in silico we screened a large number of peptides using arrays, identifying the most promising one, for which IgG1 sensitivity and specificity, with limited sample size, supported this proof of concept strategy for diagnostics discovery, which can be applied to the development of more robust IgG1 RDTs for monitoring clinical status in VL

    Design, Development and Evaluation of rK28-Based Point-of-Care Tests for Improving Rapid Diagnosis of Visceral Leishmaniasis

    Get PDF
    Visceral Leishmaniasis caused by Leishmania donovani is endemic in several parts of South Asia, East Africa, South and Central America. It is a vector-borne disease transmitted by bites of infected sand flies and often fatal in the absence of chemotherapy. Timely diagnosis is an essential first step in providing proper patient care and in controlling transmission. VL diagnosis in East Africa and Latin America are currently based on microscopic confirmation of parasites in tissue aspirates. The Kalazar Detect rapid test is widely used as a confirmatory test in India with very high accuracy, but sensitivity issues have severely limited its usefulness in the African sub-continent. Direct Agglutination Test is another confirmatory test used widely in East Africa and offers high sensitivity but is not field-friendly. We report on the design of a novel synthetic fusion protein capable of sequestering antibodies against three different Leishmania donovani antigens and the development of point-of-care tests for improving VL diagnosis. We believe the ease of use of these rapid tests and their high accuracy in detecting VL cases could make them useful as a first-line test, thereby eliminating the need for painful biopsies and ensuring better patient care

    Diagnostic Accuracy of the Leishmania OligoC-TesT and NASBA-Oligochromatography for Diagnosis of Leishmaniasis in Sudan

    Get PDF
    The leishmaniases are a group of vector-borne diseases caused by protozoan parasites of the genus Leishmania. The parasites are transmitted by phlebotomine sand flies and can cause, depending on the infecting species, three clinical manifestations of leishmaniasis: visceral leishmaniasis (VL), post kala-azar dermal leishmaniasis (PKDL) and cutaneous leishmaniasis (CL) including the mucocutaneous form. VL, PKDL as well as CL are endemic in several parts of Sudan, and VL especially represents a major health problem in this country. Molecular tests such as the polymerase chain reaction (PCR) or nucleic acid sequence based assay (NASBA) are powerful techniques for accurate detection of the parasite in clinical specimens, but broad use is hampered by their complexity and lack of standardisation. Recently, the Leishmania OligoC-TesT and NASBA-Oligochromatography were developed as simplified and standardised PCR and NASBA formats. In this study, both tests were phase II evaluated for diagnosis of VL, PKDL and CL in Sudan
    • …
    corecore