57 research outputs found

    Modeling circadian and sleep-homeostatic effects on short-term interval timing

    Get PDF
    Short-term interval timing i.e., perception and action relating to durations in the seconds range, has been suggested to display time-of-day as well as wake dependent fluctuations due to circadian and sleep-homeostatic changes to the rate at which an underlying pacemaker emits pulses; pertinent human data being relatively sparse and lacking in consistency however, the phenomenon remains elusive and its mechanism poorly understood. To better characterize the putative circadian and sleep-homeostatic effects on interval timing and to assess the ability of a pacemaker-based mechanism to account for the data, we measured timing performance in eighteen young healthy male subjects across two epochs of sustained wakefulness of 38.67 h each, conducted prior to (under entrained conditions) and following (under free-running conditions) a 28 h sleep-wake schedule, using the methods of duration estimation and duration production on target intervals of 10 and 40 s. Our findings of opposing oscillatory time courses across both epochs of sustained wakefulness that combine with increasing and, respectively, decreasing, saturating exponential change for the tasks of estimation and production are consistent with the hypothesis that a pacemaker emitting pulses at a rate controlled by the circadian oscillator and increasing with time awake determines human short-term interval timing; the duration-specificity of this pattern is interpreted as reflecting challenges to maintaining stable attention to the task that progressively increase with stimulus magnitude and thereby moderate the effects of pacemaker-rate changes on overt behavior

    Effects of mild calorie restriction and high-intensity interval walking in middle-aged and older overweight Japanese

    Get PDF
    We investigated whether a combination of mild calorie restriction (MCR) and high-intensity interval walking (HIW) improved physical fitness more than HIW alone in middle-aged and older overweight Japanese (40-69 years old, BMI >= 23.6 kg/m(2)). Forty-seven women and 16 men were divided into MCR + HIW and HIW groups. All subjects performed HIW: >= 5 sets of 3-min low-intensity walking (40% peak aerobic capacity for walking, VO2peak) and 3-min high-intensity walking (>= 70% VO2peak) per day, >= 4 days per week, for 16 weeks while energy expenditure was monitored with a tri-axial accelerometer. The MCR + HIW group consumed meal replacement formula (240 kcal): a mixture of low-carbohydrates and -fat and high-protein, for either lunch or dinner everyday and therefore, had similar to 87% of the energy intake of the HIW group during the intervention period. Although the HIW group showed improvements in BMI, blood pressure, and several blood chemicals, the MCR + HIW group had greater improvement. Moreover, the medical expenditure for the 6 months including the intervention period was 59% lower in the MCR + HIW group than in the HIW group. Our strategy of a short-term combination of MCR and HIW may thus prevent lifestyle-associated diseases and improve health in middle-aged and older overweight Japanese.ArticleEXPERIMENTAL GERONTOLOGY. 44(10):666-675 (2009)journal articl

    Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, manufactured nano/microparticles such as fullerenes (C<sub>60</sub>), carbon black (CB) and ceramic fiber are being widely used because of their desirable properties in industrial, medical and cosmetic fields. However, there are few data on these particles in mammalian mutagenesis and carcinogenesis. To examine genotoxic effects by C<sub>60</sub>, CB and kaolin, an <it>in vitro </it>micronuclei (MN) test was conducted with human lung cancer cell line, A549 cells. In addition, DNA damage and mutations were analyzed by <it>in vivo </it>assay systems using male C57BL/6J or <it>gpt </it>delta transgenic mice which were intratracheally instilled with single or multiple doses of 0.2 mg per animal of particles.</p> <p>Results</p> <p>In <it>in vitro </it>genotoxic analysis, increased MN frequencies were observed in A549 cells treated with C<sub>60</sub>, CB and kaolin in a dose-dependent manner. These three nano/microparticles also induced DNA damage in the lungs of C57BL/6J mice measured by comet assay. Moreover, single or multiple instillations of C<sub>60 </sub>and kaolin, increased either or both of <it>gpt </it>and Spi<sup>- </sup>mutant frequencies in the lungs of <it>gpt </it>delta transgenic mice. Mutation spectra analysis showed transversions were predominant, and more than 60% of the base substitutions occurred at G:C base pairs in the <it>gpt </it>genes. The G:C to C:G transversion was commonly increased by these particle instillations.</p> <p>Conclusion</p> <p>Manufactured nano/microparticles, CB, C<sub>60 </sub>and kaolin, were shown to be genotoxic in <it>in vitro </it>and <it>in vivo </it>assay systems.</p

    Distribution of intraperitoneally administered deuterium-labeled water in aquaporin-4-knockout mouse brain after middle cerebral artery occlusion

    Get PDF
    IntroductionAs the movement of water in the brain is known to be involved in neural activity and various brain pathologies, the ability to assess water dynamics in the brain will be important for the understanding of brain function and the diagnosis and treatment of brain diseases. Aquaporin-4 (AQP4) is a membrane channel protein that is highly expressed in brain astrocytes and is important for the movement of water molecules in the brain.MethodsIn this study, we investigated the contribution of AQP4 to brain water dynamics by administering deuterium-labeled water (D2O) intraperitoneally to wild-type and AQP4 knockout (AQP4-ko) mice that had undergone surgical occlusion of the middle cerebral artery (MCA). Water dynamics in the infarct region and on either side of the anterior cerebral artery (ACA) was monitored with proton-density-weighted imaging (PDWI) performed on a 7T animal MRI.ResultsD2O caused a negative signal change quickly after administration. The AQP4-ko mice showed a delay of the time-to-minimum in both the contralateral and ipsilateral ACA regions compared to wild-type mice. Also, only the AQP4- ko mice showed a delay of the time-to-minimum in the ipsilateral ACA region compared to the contralateral side. In only the wild-type mice, the signal minimum in the ipsilateral ACA region was higher than that in the contralateral ACA region. In the infarct region, the signal attenuation was slower for the AQP4-ko mice in comparison to the wild-type mice.DiscussionThese results suggest that AQP4 loss affects water dynamics in the ACA region not only in the infarct region. Dynamic PDWI after D2O administration may be a useful tool for showing the effects of AQP4 in vivo

    Quantitative evaluation of malignant gliomas damage induced by photoactivation of IR700 dye

    No full text
    The processes involved in malignant gliomas damage were quantitatively evaluated by microscopy. The near-infrared fluorescent dye IR700 that is conjugated to an anti-CD133 antibody (IR700-CD133) specifically targets malignant gliomas (U87MG) and stem cells (BT142) and is endocytosed into the cells. The gliomas are then photodamaged by the release of reactive oxygen species (ROS) and the heat induced by illumination of IR700 by a red laser, and the motility of the vesicles within these cells is altered as a result of cellular damage. To investigate these changes in motility, we developed a new method that measures fluctuations in the intensity of phase-contrast images obtained from small areas within cells. The intensity fluctuation in U87MG cells gradually decreased as cell damage progressed, whereas the fluctuation in BT142 cells increased. The endocytosed IR700 dye was co-localized in acidic organelles such as endosomes and lysosomes. The pH in U87MG cells, as monitored by a pH indicator, was decreased and then gradually increased by the illumination of IR700, while the pH in BT142 cells increased monotonically. In these experiments, the processes of cell damage were quantitatively evaluated according to the motility of vesicles and changes in pH

    Large red-shift of luminescence from BaCN2:Eu2+ red phosphor under high pressure

    Get PDF
    We report a new material, BaCN2:Eu2+ for a very sensitive optical pressure sensor, 50 times more sensitive than ruby. Photoluminescence spectra of the BaCN2:Eu2+ phosphor was measured under hydrostatic pressures from ambient pressure to 5.34 GPa at room temperature. The peak wavelength of the luminescence was drastically red-shifted at a rate of 19 nm GPa(-1), which is approximately 50 times larger than that of the ruby, most commonly used as a pressure sensor in the high-pressure experiments. This large shift of the luminescence wavelength is suitable for application in optical pressure sensors for the high-pressure experiments without a high-resolution monochromator

    Quantitative evaluation of malignant gliomas damage induced by photoactivation of IR700 dye

    No full text
    <p>The processes involved in malignant gliomas damage were quantitatively evaluated by microscopy. The near-infrared fluorescent dye IR700 that is conjugated to an anti-CD133 antibody (IR700-CD133) specifically targets malignant gliomas (U87MG) and stem cells (BT142) and is endocytosed into the cells. The gliomas are then photodamaged by the release of reactive oxygen species (ROS) and the heat induced by illumination of IR700 by a red laser, and the motility of the vesicles within these cells is altered as a result of cellular damage. To investigate these changes in motility, we developed a new method that measures fluctuations in the intensity of phase-contrast images obtained from small areas within cells. The intensity fluctuation in U87MG cells gradually decreased as cell damage progressed, whereas the fluctuation in BT142 cells increased. The endocytosed IR700 dye was co-localized in acidic organelles such as endosomes and lysosomes. The pH in U87MG cells, as monitored by a pH indicator, was decreased and then gradually increased by the illumination of IR700, while the pH in BT142 cells increased monotonically. In these experiments, the processes of cell damage were quantitatively evaluated according to the motility of vesicles and changes in pH.</p> <p>Phototoxicity of IR700 dye conjugated with anti-CD133 antibody to gliomas was evaluated quantitatively by the measurement of vesicle fluctuation and pH indicator.</p

    Red-emission over a wide range of wavelengths at various temperatures from tetragonal BaCN2:Eu2+

    Get PDF
    A new polymorph of BaCN2 was obtained via a simple nitridation reaction of BaCO3 under an NH3 flow at 900 1C. The product was analyzed via single crystal X-ray diffraction and infrared spectroscopy, and it was found to have a tetragonal I4/mcm crystal structure (space group no. 140) with a = 0.60249(4) nm and c = 0.71924(5) nm. In this structure, each Ba2+ cation is situated in the square antiprism of N atoms of NCN(2-)anionic groups. Eu2+ doped BaCN2 can be excited by irradiation of blue and green light (from 400 to 550 nm), and it generates an intense red emission peak at 660 nm with a quantum efficiency of 42% in response to 465 nm excitation at room temperature. The peak emission wavelength varies over an extremely wide range of temperature, from 640 nm at 500 K to 680 nm at 80 K, and this red-shift with decreasing temperature is attributed to a unit cell shrinkage that results in significant crystal field splitting of the 5d energy levels of the Eu2+ ions
    corecore