41 research outputs found

    Gray-level Texture Characterization Based on a New Adaptive

    Get PDF
    In this paper, we propose a new nonlinear exponential adaptive two-dimensional (2-D) filter for texture characterization. The filter coefficients are updated with the Least Mean Square (LMS) algorithm. The proposed nonlinear model is used for texture characterization with a 2-D Auto-Regressive (AR) adaptive model. The main advantage of the new nonlinear exponential adaptive 2-D filter is the reduced number of coefficients used to characterize the nonlinear parametric models of images regarding the 2-D second-order Volterra model. Whatever the degree of the non-linearity, the problem results in the same number of coefficients as in the linear case. The characterization efficiency of the proposed exponential model is compared to the one provided by both 2-D linear and Volterra filters and the cooccurrence matrix method. The comparison is based on two criteria usually used to evaluate the features discriminating ability and the class quantification. Extensive experiments proved that the exponential model coefficients give better results in texture discrimination than several other parametric features even in a noisy context

    Gray-level Texture Characterization Based on a New Adaptive Nonlinear Auto-Regressive Filter

    Get PDF
    In this paper, we propose a new nonlinear exponential adaptive two-dimensional (2-D) filter for texture characterization. The filter coefficients are updated with the Least Mean Square (LMS) algorithm. The proposed nonlinear model is used for texture characterization with a 2-D Auto-Regressive (AR) adaptive model. The main advantage of the new nonlinear exponential adaptive 2-D filter is the reduced number of coefficients used to characterize the nonlinear parametric models of images regarding the 2-D second-order Volterra model. Whatever the degree of the non-linearity, the problem results in the same number of coefficients as in the linear case. The characterization efficiency of the proposed exponential model is compared to the one provided by both 2-D linear and Volterra filters and the cooccurrence matrix method. The comparison is based on two criteria usually used to evaluate the features discriminating ability and the class quantification. Extensive experiments proved that the exponential model coefficients give better results in texture discrimination than several other parametric features even in a noisy context

    Caractérisation des textures avec les coefficients 2-D transverses et de réflexion : Une étude comparative

    Get PDF
    Dans cet article, on traite le problème de la caractérisation des textures avec de nouvelles approches de modélisation paramétrique. On se propose de fournir une réponse à la question suivante : lesquels parmi les coefficients 2-D transverses ou de réflexion 2-D ( treillis) permettent-ils de mieux caractériser les textures ? Pour ceci, on considère plusieurs classes de textures et on estime pour chaque texture les deux types de coefficients avec l'algorithme adaptatif 2-D FLRLS (2-D Fast Lattice Recursive Least Square). Comme critère de comparaison, on définit un pouvoir séparateur (rapport des variances entre-classes et dans la classe) pour chaque coefficients. On montre que les coefficients de réflexion présentent un meilleur pouvoir séparateur que celui des coefficients transverses

    Is type 1 diabetes a chaotic phenomenon?

    Full text link
    A database of ten type 1 diabetes patients wearing a continuous glucose monitoring device has enabled to record their blood glucose continuous variations every minute all day long during fourteen consecutive days. These recordings represent, for each patient, a time series consisting of 1 value of glycaemia per minute during 24 hours and 14 days, i.e., 20,160 data point. Thus, while using numerical methods, these time series have been anonymously analyzed. Nevertheless, because of the stochastic inputs induced by daily activities of any human being, it has not been possible to discriminate chaos from noise. So, we have decided to keep only the 14 nights of these ten patients. Then, the determination of the time delay and embedding dimension according to the delay coordinate embedding method has allowed us to estimate for each patient the correlation dimension and the maximal Lyapunov exponent. This has led us to show that type 1 diabetes could indeed be a chaotic phenomenon. Once this result has been confirmed by the determinism test, we have computed the Lyapunov time and found that the limit of predictability of this phenomenon is nearly equal to half the 90-minutes sleep-dream cycle. We hope that our results will prove to be useful to characterize and predict blood glucose variations

    Enhanced fingerprint classification through modified PCA with SVD and invariant moments

    Get PDF
    This research introduces a novel MOMENTS-SVD vector for fingerprint identification, combining invariant moments and SVD (Singular Value Decomposition), enhanced by a modified PCA (Principal Component Analysis). Our method extracts unique fingerprint features using SVD and invariant moments, followed by classification with Euclidean distance and neural networks. The MOMENTS-SVD vector reduces computational complexity by outperforming current models. Using the Equal Error Rate (EER) and ROC curve, a comparative study across databases (CASIA V5, FVC 2002, 2004, 2006) assesses our method against ResNet, VGG19, Neuro Fuzzy, DCT Features, and Invariant Moments, proving enhanced accuracy and robustness

    Fire Tracking in Video Sequences Using Geometric Active Contours Controlled by Artificial Neural Network

    No full text
    International audienc

    A Neural Adaptive Level Set Method for Wildland Forest Fire Tracking

    No full text
    International audienc
    corecore