167 research outputs found

    Progress on Polynomial Identity Testing - II

    Full text link
    We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.Comment: 17 pages, 1 figure, surve

    Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn't matter

    Full text link
    Let C be a depth-3 circuit with n variables, degree d and top fanin k (called sps(k,d,n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runs in time poly(nd^k), regardless of the base field. The only field for which polynomial time algorithms were previously known is F=Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a sps(k,d,n) circuit to k variables, but preserves the identity structure.Comment: 14 pages, 1 figure, preliminary versio

    Algebraic Independence and Blackbox Identity Testing

    Full text link
    Algebraic independence is an advanced notion in commutative algebra that generalizes independence of linear polynomials to higher degree. Polynomials {f_1, ..., f_m} \subset \F[x_1, ..., x_n] are called algebraically independent if there is no non-zero polynomial F such that F(f_1, ..., f_m) = 0. The transcendence degree, trdeg{f_1, ..., f_m}, is the maximal number r of algebraically independent polynomials in the set. In this paper we design blackbox and efficient linear maps \phi that reduce the number of variables from n to r but maintain trdeg{\phi(f_i)}_i = r, assuming f_i's sparse and small r. We apply these fundamental maps to solve several cases of blackbox identity testing: (1) Given a polynomial-degree circuit C and sparse polynomials f_1, ..., f_m with trdeg r, we can test blackbox D := C(f_1, ..., f_m) for zeroness in poly(size(D))^r time. (2) Define a spsp_\delta(k,s,n) circuit C to be of the form \sum_{i=1}^k \prod_{j=1}^s f_{i,j}, where f_{i,j} are sparse n-variate polynomials of degree at most \delta. For k = 2 we give a poly(sn\delta)^{\delta^2} time blackbox identity test. (3) For a general depth-4 circuit we define a notion of rank. Assuming there is a rank bound R for minimal simple spsp_\delta(k,s,n) identities, we give a poly(snR\delta)^{Rk\delta^2} time blackbox identity test for spsp_\delta(k,s,n) circuits. This partially generalizes the state of the art of depth-3 to depth-4 circuits. The notion of trdeg works best with large or zero characteristic, but we also give versions of our results for arbitrary fields.Comment: 32 pages, preliminary versio

    Quasi-polynomial Hitting-set for Set-depth-Delta Formulas

    Full text link
    We call a depth-4 formula C set-depth-4 if there exists a (unknown) partition (X_1,...,X_d) of the variable indices [n] that the top product layer respects, i.e. C(x) = \sum_{i=1}^k \prod_{j=1}^{d} f_{i,j}(x_{X_j}), where f_{i,j} is a sparse polynomial in F[x_{X_j}]. Extending this definition to any depth - we call a depth-Delta formula C (consisting of alternating layers of Sigma and Pi gates, with a Sigma-gate on top) a set-depth-Delta formula if every Pi-layer in C respects a (unknown) partition on the variables; if Delta is even then the product gates of the bottom-most Pi-layer are allowed to compute arbitrary monomials. In this work, we give a hitting-set generator for set-depth-Delta formulas (over any field) with running time polynomial in exp(({Delta}^2 log s)^{Delta - 1}), where s is the size bound on the input set-depth-Delta formula. In other words, we give a quasi-polynomial time blackbox polynomial identity test for such constant-depth formulas. Previously, the very special case of Delta=3 (also known as set-multilinear depth-3 circuits) had no known sub-exponential time hitting-set generator. This was declared as an open problem by Shpilka & Yehudayoff (FnT-TCS 2010); the model being first studied by Nisan & Wigderson (FOCS 1995). Our work settles this question, not only for depth-3 but, up to depth epsilon.log s / loglog s, for a fixed constant epsilon < 1. The technique is to investigate depth-Delta formulas via depth-(Delta-1) formulas over a Hadamard algebra, after applying a `shift' on the variables. We propose a new algebraic conjecture about the low-support rank-concentration in the latter formulas, and manage to prove it in the case of set-depth-Delta formulas.Comment: 22 page

    Deterministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs

    Get PDF
    A read-once oblivious arithmetic branching program (ROABP) is an arithmetic branching program (ABP) where each variable occurs in at most one layer. We give the first polynomial time whitebox identity test for a polynomial computed by a sum of constantly many ROABPs. We also give a corresponding blackbox algorithm with quasi-polynomial time complexity nO(logn)n^{O(\log n)}. In both the cases, our time complexity is double exponential in the number of ROABPs. ROABPs are a generalization of set-multilinear depth-33 circuits. The prior results for the sum of constantly many set-multilinear depth-33 circuits were only slightly better than brute-force, i.e. exponential-time. Our techniques are a new interplay of three concepts for ROABP: low evaluation dimension, basis isolating weight assignment and low-support rank concentration. We relate basis isolation to rank concentration and extend it to a sum of two ROABPs using evaluation dimension (or partial derivatives).Comment: 22 pages, Computational Complexity Conference, 201

    Analyzing the impact of GST on tax revenue in India : the tax buoyancy approach

    Get PDF
    Purpose: The purpose of this paper is to analyse the impact of newly introduced Goods and Services Tax (GST) in India. This paper adopts the tax buoyancy approach for analysing the impact of GST on tax revenue. Design/Methodology/Approach: We conducted our study using semi logarithmic ANCOVA regression model in which we introduced VAT and GST as dummy variables. Findings: Our study finds that after the introduction of GST India’s tax revenue has become less responsive to the changes in GDP. It indicates that post introduction of GST there is some reduction in the tax burden on the consumers and corporates which supports the government’s justification behind the introduction of GST. Practical Implications: The study is expected to help the government in deciding the future course of action towards effective policy making for revenue generation. Originality/Value: Since none of the existing studies analyses the impact of GST on tax revenue our study is unique and fulfils the gap in the existing literature.peer-reviewe

    Analysing the impact of GST on tax revenue in India : the tax buoyancy Approach

    Get PDF
    Purpose: The purpose of this paper is to analyse the impact of newly introduced Goods and Services Tax (GST) on tax revenue in India. This paper adopts the tax buoyancy approach for analysing the impact of GST on tax revenue. Design/Methodology/Approach: We conducted our study using semi logarithmic ANCOVA regression model in which we introduced Value Added Tax (VAT) and GST as dummy variables. Findings: Our study finds that after the introduction of GST India’s tax revenue has become less responsive to the changes in GDP. It indicates that post introduction of GST there is some reduction in the tax burden on the consumers and corporates which supports the government’s justification behind the introduction of GST. Practical Implications: The study is expected to help the government in deciding the future course of action towards effective policy making for revenue generation. Originality/Value: Since none of the existing studies analyses the impact of GST on tax revenue our study is unique and fulfils the gap in the existing literature.peer-reviewe
    corecore