33 research outputs found

    Physical Stability and Viscoelastic Properties of Co-Amorphous Ezetimibe/Simvastatin System

    Get PDF
    The purpose of this paper is to examine the physical stability as well as viscoelastic properties of the binary amorphous ezetimibe–simvastatin system. According to our knowledge, this is the first time that such an amorphous composition is prepared and investigated. The tendency toward re-crystallization of the amorphous ezetimibe–simvastatin system, at both standard storage and elevated temperature conditions, have been studied by means of X-ray diffraction (XRD). Our investigations have revealed that simvastatin remarkably improves the physical stability of ezetimibe, despite the fact that it works as a plasticizer. Pure amorphous ezetimibe, when stored at room temperature, begins to re-crystallize after 14 days after amorphization. On the other hand, the ezetimibe-simvastatin binary mixture (at the same storage conditions) is physically stable for at least 1 year. However, the devitrification of the binary amorphous composition was observed at elevated temperature conditions (T = 373 K). Therefore, we used a third compound to hinder the re-crystallization. Finally, both the physical stability as well as viscoelastic properties of the ternary systems containing different concentrations of the latter component have been thoroughly investigated

    Molecular insight into thymoquinone mechanism of action against Mycobacterium tuberculosis

    Get PDF
    Natural products are promising antimicrobials, usually having multiple and different cellular targets than synthetic antibiotics. Their influence on bacteria at various metabolic and functional levels contributes to higher efficacy even against drug-resistant strains. One such compound is a naturally occurring p-benzoquinone – thymoquinone. It is effective against different bacteria, including multidrug-resistant and extremely drug-resistant Mycobacterium tuberculosis. Its antibacterial mechanism of action was studied in several bacterial species except mycobacteria. To get an insight into the antimycobacterial activity of thymoquinone at the molecular level, we performed metabolomic and transcriptomic analyzes of bacteria exposed to this compound. The expression of genes coding stress-responsive sigma factors revealed that thymoquinone rapidly induces the production of sigE transcripts. At the same time, prolonged influence results in the overexpression of all sigma factor genes and significantly upregulates sigF. The metabolomic analysis confirmed that the antimycobacterial activity of thymoquinone was related to the depletion of NAD and ATP pools and the downregulation of plasma membrane lipids. This state was observed after 24 h and was persistent the next day, suggesting that bacteria could not activate catabolic mechanisms and produce energy. Additionally, the presence of a thymoquinone nitrogen derivative in the bacterial broth and the culture was reported

    Cold adapted and closely related mucoraceae species colonise dry-aged beef (DAB)

    Get PDF
    The dry ageing is a historically relevant method of meat preservation, now used as a way to produce the dry-aged beef (DAB) known for its pronounced flavour. Partially responsible for the taste of the DAB may be various microorganisms that grow on the surface of the meat. Historically, the fungal species colonising the DAB were described as members of the genera Thamnidium and Mucor. In this study we used both culture based approach as well as ITS2 rDNA metabarcoding analysis to investigate the fungal community of the DAB, with special emphasis on the mucoralean taxa. Isolated fungi were members of 6 different species from the family Mucoraceae, belonging to the genera Mucor and Helicostylum. Metabarcoding data provided supplementary information regarding the presence of other fungi including those from the Thamnidium genus. In both approaches used in this study isolates closely related to the Mucor flavus strain CBS 992.68 dominated. © 2023 The Author

    Lipophilicity determination of quaternary (Fluoro)quinolones by chromatographic and theoretical approaches

    Get PDF
    Lipophilicity is a vital physicochemical parameter of a molecule, which affects several biological processes such as absorption, tissue distribution, and pharmacokinetic properties. In this study, evaluation of lipophilicities of a series of novel fluoroquinolone-Safirinium dye hybrids using chromatographic and computational methods is presented. Fluoroquinolone-Safirinium dye hybrids have been synthesized as new dual-acting hydrophilic antibacterial agents. Reversed phase thin-layer chromatography and micellar electrokinetic chromatography experiments were carried out. Furthermore, logP values of the target structures were predicted by means of different software platforms and algorithms. In order to assess similarities and dissimilarities of the obtained lipophilicity indexes, cluster analysis and sum of ranking differences were performed. The significant differences of calculated logP values (α = 0.05, p < 0.001) indicated that an experimental approach is necessary for lipophilicity prediction of this class of antibiotics. Chromatographic data indicated that the newly synthesized hybrid (fluoro)quinolone-based quaternary ammonium derivatives show less lipophilic character than the parent (fluoro)quinolones. Additionally, the chromatographically obtained lipophilicity indexes were evaluated for possible application in quantitative retention–activity relationships. The established lipophilicity models have the potential to predict antimicrobial activities of a series of quaternary (fluoro)quinolones against Bacillus subtilis, Escherichia coli, and Proteus vulgaris.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3741

    Volatile organic compounds in pharmacy – the range of the problem

    No full text
    The sensitivity and chemical instability of the active pharmaceutical ingredients (API) may result in the formation and emission of volatile substances which affect not only the stability of the medicinal product, but also leads to changes of physicochemical properties, causing negative pharmacologic effects sometimes toxic. For this reason, it is important to conduct routine stability tests, as well as, to determine gaseous degradation products using modern analytical methods, often unconventional. Knowledge of medicinal chemistry, physical chemistry, technology and toxicology is needed to provide a stable form of the drug and its utmost therapeutic effect. Available guidelines on determined volatile organic compounds (VOCs) present in samples of drug substances have been verified , types of VOCs have been specified and classified. Current literature reviewed shows the results of determination of VOCs in active drug compounds and medicinal products, including discussion on various possibilities of their detection and identification. Currently used methods are based on gas chromatography and ion mobility spectrometry IMS

    A Novel Approach to Optimize Hot Melt Impregnation in Terms of Amorphization Efficiency

    No full text
    In this study, an innovative methodology to optimize amorphization during the hot melt impregnation (HMI) process was proposed. The novelty of this report revolves around the use of thermal analysis in combination with design of experiments (DoEs) to reduce residual crystallinity during the HMI process. As a model formulation, a mixture of ibuprofen (IBU) and Neusilin was used. The main aim of the study was to identify the critical process parameters of HMI and determine their optimal values to assure a robust impregnation process and possibly the highest possible amorphization rate of IBU. In order to realize this, a DoE approach was proposed based on a face-centered composite design involving three factors. The IBU/Neusilin ratio, the feeding rate, and the screw speed were considered as variables, while the residual crystallinity level of IBU, determined using differential scanning calorimetry (DSC), was measured as the response. Additionally, the stability of IBU under HMI was analyzed using high-performance liquid chromatography to estimate the extent of potential degradation. In order to verify the correctness of the DoE model, tested extrudates were manufactured by HMI and the obtained extrudates were thoroughly examined using scanning electron micrography, X-ray powder diffraction, and DSC
    corecore