129 research outputs found

    Iron restriction induces preferential down-regulation of H2-consuming over H2-evolving reactions during fermentative growth of Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>synthesizes three anaerobically inducible [NiFe]-hydrogenases (Hyd). All three enzymes have a [NiFe]-cofactor in the large subunit and each enzyme also has an iron-sulfur-containing small subunit that is required for electron transfer. In order to synthesize functionally active Hyd enzymes iron must be supplied to the maturation pathways for both the large and small subunits. The focus of this study was the analysis of the iron uptake systems required for synthesis of active Hyd-1, Hyd-2 and Hyd-3 during fermentative growth.</p> <p>Results</p> <p>A transposon-insertion mutant impaired in hydrogenase enzyme activity was isolated. The mutation was in the <it>feoB </it>gene encoding the ferrous iron transport system. The levels of both hydrogen-oxidizing enzymes Hyd-1 and Hyd-2 as determined by specific in-gel activity staining were reduced at least 10-fold in the mutant after anaerobic fermentative growth in minimal medium, while the hydrogen-evolving Hyd-3 activity was less severely affected. Supplementation of the growth medium with ferric iron, which is taken up by e.g. the siderophore enterobactin, resulted in phenotypic complementation of the <it>feoB </it>mutant. Growth in rich medium demonstrated that a mutant lacking both the ferrous iron transport system and enterobactin biosynthesis (<it>entC</it>) was devoid of Hyd-1 and Hyd-2 activity but retained some hydrogen-evolving Hyd-3 activity. Analysis of crude extracts derived from the <it>feoB entC </it>double null mutant revealed that the large subunits of the hydrogen-oxidizing enzymes Hyd-1 and Hyd-2 were absent. Analysis of <it>lacZ </it>fusions demonstrated, however, that expression of the <it>hya</it>, <it>hyb </it>and <it>hyc </it>operons was reduced only by maximally 50% in the mutants compared with the wild type.</p> <p>Conclusions</p> <p>Our findings demonstrate that the ferrous iron transport system is the principal route of iron uptake for anaerobic hydrogenase biosynthesis, with a contribution from the ferric-enterobactin system. Hydrogen-oxidizing enzyme function was abolished in a <it>feoB entC </it>double mutant and this appears to be due to post-translational effects. The retention of residual hydrogen-evolving activity, even in the <it>feoB entC </it>double null mutant suggests that sufficient iron can be scavenged to synthesize this key fermentative enzyme complex in preference to the hydrogen-uptake enzymes.</p

    The crystal structure of Escherichia coli TdcF, a member of the highly conserved YjgF/YER057c/UK114 family

    Get PDF
    BACKGROUND: The YjgF/YER057c/UK114 family of proteins is widespread in nature, but has as yet no clearly defined biological role. Members of the family exist as homotrimers and are characterised by intersubunit clefts that are delineated by well-conserved residues; these sites are likely to be of functional significance, yet catalytic activity has never been detected for any member of this family. The gene encoding the TdcF protein of E. coli, a YjgF/YER057c/UK114 family member, resides in an operon that strongly suggests a role in the metabolism of 2-ketobutyrate for this protein. RESULTS: We have determined the crystal structure of E. coli TdcF by molecular replacement to a maximum resolution of 1.6 Å. Structures are also presented of TdcF complexed with a variety of ligands. CONCLUSION: The TdcF structure closely resembles those of all YjgF/YER057c/UK114 family members determined thus far. It has the trimeric quaternary structure and intersubunit cavities characteristic of this family of proteins. We show that TdcF is capable of binding several low molecular weight metabolites bearing a carboxylate group, although the interaction with 2-ketobutyrate appears to be the most well defined. These observations may be indicative of a role for TdcF in sensing this potentially toxic metabolite

    Isolation of a HypC–HypD complex carrying diatomic CO and CN− ligands

    Get PDF
    The HypC and HypD maturases are required for the biosynthesis of the Fe(CN)2CO cofactor in the large subunit of [NiFe]-hydrogenases. Using infrared spectroscopy we demonstrate that an anaerobically purified, Strep-tagged HypCD complex from Escherichia coli exhibits absorption bands characteristic of diatomic CO and CN− ligands as well as CO2. Metal and sulphide analyses revealed that along with the [4Fe–4S]2+ cluster in HypD, the complex has two additional oxygen-labile Fe ions. We prove that HypD cysteine 41 is required for the coordination of all three ligands. These findings suggest that the HypCD complex carries minimally the Fe(CN)2CO cofactor

    The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>synthesizes three membrane-bound molybdenum- and selenocysteine-containing formate dehydrogenases, as well as up to four membrane-bound [NiFe]-hydrogenases. Two of the formate dehydrogenases (Fdh-N and Fdh-O) and two of the hydrogenases (Hyd-1 and Hyd-2) have their respective catalytic subunits located in the periplasm and these enzymes have been shown previously to oxidize formate and hydrogen, respectively, and thus function in energy metabolism. Mutants unable to synthesize the [NiFe]-hydrogenases retain a H<sub>2</sub>: benzyl viologen oxidoreductase activity. The aim of this study was to identify the enzyme or enzymes responsible for this activity.</p> <p>Results</p> <p>Here we report the identification of a new H<sub>2</sub>: benzyl viologen oxidoreductase enzyme activity in <it>E. coli </it>that is independent of the [NiFe]-hydrogenases. This enzyme activity was originally identified after non-denaturing polyacrylamide gel electrophoresis and visualization of hydrogen-oxidizing activity by specific staining. Analysis of a crude extract derived from a variety of <it>E. coli </it>mutants unable to synthesize any [NiFe]-hydrogenase-associated enzyme activity revealed that the mutants retained this specific hydrogen-oxidizing activity. Enrichment of this enzyme activity from solubilised membrane fractions of the hydrogenase-negative mutant FTD147 by ion-exchange, hydrophobic interaction and size-exclusion chromatographies followed by mass spectrometric analysis identified the enzymes Fdh-N and Fdh-O. Analysis of defined mutants devoid of selenocysteine biosynthetic capacity or carrying deletions in the genes encoding the catalytic subunits of Fdh-N and Fdh-O demonstrated that both enzymes catalyze hydrogen activation. Fdh-N and Fdh-O can also transfer the electrons derived from oxidation of hydrogen to other redox dyes.</p> <p>Conclusions</p> <p>The related respiratory molybdo-selenoproteins Fdh-N and Fdh-O of <it>Escherichia coli </it>have hydrogen-oxidizing activity. These findings demonstrate that the energy-conserving selenium- and molybdenum-dependent formate dehydrogenases Fdh-N and Fdh-O exhibit a degree of promiscuity with respect to the electron donor they use and identify a new class of dihydrogen-oxidizing enzyme.</p

    The [NiFe]-hydrogenase accessory chaperones HypC and HybG of Escherichia coli are iron- and carbon dioxide-binding proteins.

    Get PDF
    [NiFe]-hydrogenase accessory proteins HypC and HypD form a complex that binds a Fe–(CN)2CO moiety and CO2. In this study two HypC homologues from Escherichia coli were purified under strictly anaerobic conditions and both contained sub-stoichiometric amounts of iron (approx. 0.3 mol Fe/mol HypC). Infrared spectroscopic analysis identified a signature at 2337 cm−1 indicating bound CO2. Aerobically isolated HypC lacked both Fe and CO2. Exchange of either of the highly conserved amino acid residues Cys2 or His51 abolished both Fe- and CO2-binding. Our results suggest that HypC delivers CO2 bound directly to Fe for reduction to CO by HypD

    Insights Into the Redox Sensitivity of Chloroflexi Hup-Hydrogenase Derived From Studies in Escherichia coli: Merits and Pitfalls of Heterologous [NiFe]-Hydrogenase Synthesis

    Get PDF
    The highly oxygen-sensitive hydrogen uptake (Hup) hydrogenase from Dehalococcoides mccartyi forms part of a protein-based respiratory chain coupling hydrogen oxidation with organohalide reduction on the outside of the cell. The HupXSL proteins were previously shown to be synthesized and enzymatically active in Escherichia coli. Here we examined the growth conditions that deliver active Hup enzyme that couples H2 oxidation to benzyl viologen (BV) reduction, and identified host factors important for this process. In a genetic background lacking the three main hydrogenases of E. coli we could show that additional deletion of genes necessary for selenocysteine biosynthesis resulted in inactive Hup enzyme, suggesting requirement of a formate dehydrogenase for Hup activity. Hup activity proved to be dependent on the presence of formate dehydrogenase (Fdh-H), which is typically associated with the H2-evolving formate hydrogenlyase (FHL) complex in the cytoplasm. Further analyses revealed that heterologous Hup activity could be recovered if the genes encoding the ferredoxin-like electron-transfer protein HupX, as well as the related HycB small subunit of Fdh-H were also deleted. These findings indicated that the catalytic HupL and electron-transferring HupS subunits were sufficient for enzyme activity with BV. The presence of the HupX or HycB proteins in the absence of Fdh-H therefore appears to cause inactivation of the HupSL enzyme. This is possibly because HupX or HycB aided transfer of electrons to the quinone pool or other oxidoreductase complexes, thus maintaining the HupSL heterodimer in a continuously oxidized state causing its inactivation. This proposal was supported by the observation that growth under either aerobic or anaerobic respiratory conditions did not yield an active HupSL. These studies thus provide a system to understand the redox sensitivity of this heterologously synthesized hydrogenase

    Metabolic Deficiences Revealed in the Biotechnologically Important Model Bacterium Escherichia coli BL21(DE3)

    Get PDF
    The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni2+ (Ni2+-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO42− ions could restore hydrogen production to BL21(DE3); however, to only 25–30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO42− were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO42− and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis

    Aconitase B Is Required for Optimal Growth of Xanthomonas campestris pv. vesicatoria in Pepper Plants

    Get PDF
    The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress
    corecore