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[NiFe]-hydrogenase maturation: Isolation of a HypC–HypD complex carrying
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The HypC and HypD maturases are required for the biosynthesis of the Fe(CN)2CO cofactor in
the large subunit of [NiFe]-hydrogenases. Using infrared spectroscopy we demonstrate that an
anaerobically purified, Strep-tagged HypCD complex from Escherichia coli exhibits absorption bands
characteristic of diatomic CO and CN� ligands as well as CO2. Metal and sulphide analyses revealed
that along with the [4Fe–4S]2+ cluster in HypD, the complex has two additional oxygen-labile Fe ions.
We prove that HypD cysteine 41 is required for the coordination of all three ligands. These findings
suggest that the HypCD complex carries minimally the Fe(CN)2CO cofactor.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

[NiFe]-hydrogenases are heteromeric enzymes that catalyze the
reversible activation of dihydrogen. The large subunit of these en-
zymes harbours a NiFe(CN)2CO cofactor, which is responsible for
catalysis [1,2]. The cofactor is coordinated through four conserved
cysteinyl residues in the large subunit of the enzyme and the Fe ion
has one CO and two CN� ligands [3,4]. Synthesis of a functionally
active hydrogenase enzyme requires the coordinated activities of
a number of highly conserved accessory enzymes amongst which
the Hyp proteins have a prominent role [5]. Current evidence
clearly indicates that insertion of the Fe(CN)2CO cofactor into a
precursor form of the large subunit occurs prior to insertion of
the nickel ion [5,6]. Thus, synthesis of the Fe(CN)2CO cofactor is
possibly completed on a maturase protein complex before being
inserted into its destination substrate, the large subunit of hydrog-
enase. The components of this maturase complex are likely to be
the HypC, HypD, HypE and HypF proteins, which are required for
the synthesis of the Fe(CN)2CO cofactor of all [NiFe]-hydrogenases
[5,7,8]. Consequently, mutants lacking any one of the genes encod-
ing these enzymes have a hydrogenase-negative phenotype [9].
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Studies carried out with the Knallgas bacterium Ralstonia
eutropha and the enterobacterium Escherichia coli have demon-
strated that the CN� ligand is made from carbamoylphosphate
[5], while the origin of the CO is different [10–12]. In an ATP-
dependent reaction the carbamoyltransferase HypF transfers a
carbamoyl moiety to the C-terminal cysteinyl residue of HypE
[7,8,13,14], which then catalyses the ATP-dependent dehydration
of the thiocarboxamide to a thiocyanate group. In vitro studies
have demonstrated that the CN� moiety can be transferred to
the HypCD complex, provided that it is isolated anaerobically;
however, neither component individually can accept the CN�

group, suggesting the proteins share coordination of the cofactor
[15]. Based on the chemical properties of the HypCD–CN com-
plex [15] it has been proposed that the CN� is coordinated either
to a mononuclear Fe species or to one of the Fe ions of the [4Fe–
4S]2+ cluster of HypD. However, as HypD is the only Hyp protein
that has a low-potential [4Fe–4S]2+ cluster [5,15,16], and a two-
electron reduction step is presumably required for the attach-
ment of each of the ligands to the iron, it is unlikely that the
CN� and CO groups are attached to one of the Fe ions of the
[4Fe–4S] cluster. Instead, it has been proposed that one of two
groups of highly conserved cysteinyl residues play an important
role in coordinating the iron atom of the Fe(CN)2CO cofactor
[17]. In particular, Cys41 of HypD has been shown to be impor-
tant for enzyme function [17].
lsevier B.V. All rights reserved.
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The form in which the CN� group is bound to the HypCD com-
plex, as well as the steps subsequent to its transfer to the complex,
are also unclear and nothing is really known about how and when
the CO ligand is introduced into this complex.

Due to the fact that the HypC protein of E. coli has been shown
to interact with the precursor form of the large subunit of hydrog-
enase 3 (Hyd-3) [18], this has led to the proposal that HypC pro-
teins deliver the Fe(CN)2CO group directly to the hydrogenase
active site, suggesting that the HypCD complex must be a carrier
of, or generate, the cofactor [5]. An exception in this regard is the
HoxV maturase of R. eutropha, which has been shown to carry a
Fe(CN)2CO cofactor and it has been proposed to deliver this cofac-
tor to a specific class of membrane-bound hydrogenases that are
cytochrome b-linked and found in certain proteobacteria [19].

As with Cys41 of HypD, the highly conserved and essential Cys2
of HypC has been shown to be essential for interaction with both
the HycE large subunit precursor of E. coli and HypD [20], suggest-
ing that this residue too might be involved in metal centre coordi-
nation. Nevertheless, no direct evidence for the proposed
coordination of the Fe(CN)2CO group on the HypCD complex has
been provided. In this study we demonstrate that the HypCD com-
plex carries CO, CN� and CO2 ligands and that the presence of these
correlates strongly with two labile iron atoms in the complex. The
highly conserved Cys41 of HypD is essential for coordination of all
three ligands.

2. Materials and methods

2.1. Bacterial strains, plasmids and growth conditions

The strains used during this study included MC4100 [21], DHP-
D (DhypD) [9] and BL21(DE3) [22]. Plasmid pT-hypDEFCStrep [15]
was used as the source of HypCStrep–HypD and was also used as a
template for site-directed mutagenesis (using the QuickChange
procedure of Stratagene) of codon 41 of hypD to encode Ala instead
of Cys using oligonucleotides 50-CGGATTATGGAAGTGGCGGGCGGT
CATACCCAC-30 and 50-GTGGGTATGACCGCCCGCCACTTCCATAATC
CG-30, which resulted in plasmid pT-hypDEFCStrep[C41A].

For overproduction of the HypCStrep–HypD complex, E. coli
strain BL21(DE3) transformed with pT-hypDEFCStrep or pT-
hypDEFCStrep[C41A] was grown in modified TB medium [23], con-
taining 100 lg/ml of ampicillin, on a rotary shaker at 37 �C until an
optical density of 0.4 at 600 nm was reached. Isopropyl-1-thio-
b-D-galactopyranoside (IPTG) was added at that point to a final
concentration of 0.3 mM to induce gene expression. After induc-
tion, the culture was incubated at 30 �C for a further 3 to 5 h. Cells
were harvested (OD600 nm of 1.0) and cell pellets were used either
immediately or stored at �20 �C until use.

For preparation of crude extracts to analyse hydrogenase en-
zyme activity E. coli cells were cultivated anaerobically at 37 �C
in buffered TYEP medium [24] supplemented with 0.8% (w/v)
glucose.

2.2. Preparation of crude extracts and protein purification

All steps were carried out under anaerobic conditions in an
anaerobic chamber (Coy Laboratories, Grass Lake, USA). Wet cell
paste was resuspended at a ratio of 1 g per 3 ml buffer W
(100 mM Tris–HCl, 150 mM NaCl, pH 8.0) including 2 mM sodium
dithionite, 5 lg DNase/ml and 0.2 mM phenylmethylsulfonyl fluo-
ride. Cells were disrupted by sonication (30 W power for 5 min
with 0.5 s pulses). Unbroken cells and debris were removed by cen-
trifugation for 30 min at 50 000g at 4 �C. The supernatant derived
from 10 g wet weight of cells was used for anaerobic purification
of the HypCStrep–D complex. Proteins were isolated using an 8-ml
gravity-flow Strep-Tactin-Sepharose column, (IBA, Göttingen, Ger-
many). Unbound proteins were removed by washing with 5 col-
umn volumes of buffer W. Recombinant HypCStrep–HypD
complex was eluted with buffer W including 5 mM desthiobiotin.
Desthiobiotin was subsequently removed by passage through a
series of Hi-Prep PD10 desalting columns (GE Healthcare) con-
nected to an ÄKTA apparatus (GE Healthcare). Proteins were con-
centrated by centrifugation at 7500g using centrifugal filters
(Amicon Ultra, 50 K, Millipore, Eschborn, Germany). About 1.5 mg
of HypCStrep–D complex could be purified from 1 g of wet-weight
of cells.

To determine the effect of EDTA on the HypCStrep–HypD com-
plex approximately 2 mg of anaerobically purified HypCStrep–D
complex was treated with buffer W containing 5 mM EDTA for
30 min. To remove excess EDTA, the mixture was subsequently de-
salted anaerobically using a Hi-Prep PD10 desalting column equil-
ibrated with buffer W and used for metal analysis. For analysis of
the HypCStrep–HypD complex by UV–Vis spectroscopy after EDTA
treatment, the same procedure was used except the desalting step
was omitted.

2.3. Polyacrylamide gel electrophoresis and protein determination

Non-denaturing polyacrylamide gel electrophoresis (PAGE)
using 7.5% (w/v) polyacrylamide with subsequent staining for
hydrogenase enzyme activity was performed exactly as de-
scribed[25]. SDS–PAGE was performed using 15% (w/v) polyacryl-
amide as described [26]. Determination of protein concentration
was done as described [27].

2.4. UV–visible spectroscopy

UV–Vis spectroscopy was performed exactly as described in
[28]. The protein concentration of HypCStrep–HypD complex was
11 mg ml�1 and that of HypCStrep–HypDC41A complex was
9.5 mg ml�1.

2.5. FTIR spectroscopy

Fourier-transform infrared (FTIR) spectroscopy was conducted
on a Tensor27 (Bruker Optik, Ettlingen, Germany) equipped with
a three-reflection silicon crystal attenuated total reflection (ATR)
cell (Smith Detection, Warrington, USA). The spectrometer was
permanently run under dry N2 in an air-tight glove box (Coy Lab-
oratories, Grass Lake, USA) with less than 10 ppm O2 and no H2.
Protein samples (typically 1 ll of 10 mg ml�1 HypCStrep–HypD)
were dried on top of the ATR crystal under pure N2 or air by help
of home-build gas mixers. All spectra were recorded at room
temperature.

2.6. Non-heme iron and acid-labile sulfide determination

Iron and acid-labile sulfide were determined as described previ-
ously [29,30]. Iron content was confirmed by inductively coupled
plasma mass spectrometry (ICP-MS) [28]. For ICP-MS analysis
0.1 mg of purified HypCStrep–D complex (1 mg ml�1) was used.

3. Results and discussion

3.1. Identification of CN� and CO ligands in the HypCD complex

Previous studies demonstrated that the HypC and HypD matu-
rases form a complex and that 14CN� could be transferred to this
complex only if the HypE and HypF proteins were supplied [15].
No transfer occurred to either HypC or to HypD alone and the



Fig. 1. (A) Analysis of purified HypCStrep–HypD complexes. Purified HypCStrep–HypD complexes (5 lg of each) were separated by SDS–PAGE (15% w/v polyacrylamide) and
stained with Coomassie Brilliant Blue. Lane M, PageRuler-Plus prestained molecular mass marker in kDa (Fermentas); lane 1, HypCStrep–HypD; lane 2, HypCStrep–HypDC41A. (B)
UV–Vis absorption spectra of anaerobically purified HypCStrep–HypD complex (full line; 11 mg ml�1), HypCStrep–HypDC41A complex (broad dotted line; 9.5 mg ml�1),
aerobically purified HypCStrep–HypD complex (fine dotted line; 9.0 mg ml�1) and anaerobically isolated HypCStrep–HypD complex (11 mg ml�1) treated with 5 mM (dotted
line) or 10 mM EDTA (full line) were recorded between 300 and 600 nm. In the interest of clarity the HypCStrep–HypD complexes are designated HypCD with the indicated
treatment.
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transfer of the labelled CN� group was inhibited by oxygen. To-
gether, these findings indicated that the HypCD complex is the
acceptor of the CN� product derived from the activity of the
HypF–HypE carbamoyltransferase-dehydratase complex and that
an iron atom in the complex coordinated it [15]. To provide evi-
dence in support of this proposal we undertook to analyse the
HypCStrep–HypD complex by Fourier-transform infrared spectros-
copy. The HypCStrep–HypD complex was purified using affinity
and gel-filtration chromatographies under strictly anaerobic condi-
tions from E. coli BL21(DE3) transformed with plasmid pT-
hypDEFCStrep [15]. As shown in Fig. 1A, the complex was close
to homogenous and, as reported earlier [15], reproducibly
contained sub-stoichiometric amounts of HypE. Henceforth, this
ternary complex will be referred to as HypCStrep–HypD.

Anaerobic UV–Vis spectroscopy of the complex revealed a broad
maximum around 420 nm (Fig. 1B), consistent with the presence of
the [4Fe–4S]2+ cluster previously identified in HypD [15]. Addi-
tional features between 350–410 nm were observed, which were
not present in isolated HypD. The nature of these features remains
unclear but suggests the presence of a chromophore in addition to
the Fe–S cluster.

The anaerobically isolated complex contained six Fe and
approximately four acid-labile S per mol complex as determined
colorimetrically (Table 1). Metal analysis determined by induc-
tively-coupled plasma mass spectrometry (ICP-MS) confirmed that
the as-isolated HypCStrep–HypD complex contained six Fe. Notably,
the amount of Ni, Cu, Co, and Zn was below the detectable limit.
Analysis of aerobically isolated HypCStrep–HypD complex identified
only four Fe and approximately three S per mol of complex (Table 1),
suggesting that these formed the [4Fe–4S]2+ cluster. Sulfides in
[4Fe–4S]2+ clusters are readily oxidized [30] possibly accounting
for the slightly lower content determined in the aerobically isolated
HypCStrep–HypD complex. UV–Vis spectroscopic analysis of aerobi-
cally isolated HypCStrep–HypD complex revealed a reduction in the
intensity of the features between 350–410 nm (Fig. 1B). Together,
these findings strongly suggest that the additional two Fe ions in
the complex are labile and were lost during aerobic purification.
To provide further support for this contention, the anaerobically
isolated HypCStrep–HypD complex was incubated with EDTA (see
Section 2) and, after anaerobic gel filtration chromatography, metal
analysis revealed that only four mol Fe per mol complex were
detectable (Table 1). This indicates that the two additional Fe atoms
were accessible to chelator while those of the [4Fe–4S]2+ cluster
were not. UV–Vis spectroscopic analysis of HypCStrep–HypD com-
plex treated with 5 mM or 10 mM EDTA revealed a progressive de-
crease in the intensity of the absorption features in the 350–410 nm
range and treatment of the complex with 10 mM EDTA resulted in a
spectrum similar to that of the aerobically isolated HypCStrep–HypD
complex (Fig. 1B). Two highly conserved motifs (motif 1: C41-
G-X-H44-X-H and motif 2: G-P-G-C69-P70-V71-C72-X-X-P75) within
HypD have been shown to be essential for hydrogenase maturation
[17] and it is conceivable that the two additional Fe ions are
coordinated by these motifs.

Analysis of the as-isolated HypCStrep–HypD complex by FTIR re-
vealed strong absorption bands at 2096 cm�1, 2073 cm�1 and
1955 cm�1 (Fig. 2), which correspond to vibrational frequencies
of the CN� and CO diatomic ligands found in [NiFe]- and [FeFe]-
hydrogenases [4,31] and which have been observed in Hyd-2 of
E. coli [11]. An additional band centred at 2337 cm�1 can be as-
signed to the asymmetrical stretch vibration of CO2 [32]. The
(CN)2CO site on HypCStrep–HypD gives rise to atypically broad
peaks (Fig. 2). This reflects heterogeneity in complex formation
and a coordination sphere less well-defined than for functional
hydrogenases [4,11,31]. In this respect HypCD differs from other
maturases too [33]. The aerobically isolated HypCStrep–HypD
complex showed no absorption bands when analysed by FTIR (data
not shown), suggesting that the CO and CN� ligands might be
coordinated by one of the labile Fe atoms.

3.2. Cys-41 of HypD is required for CN�, CO and CO2 ligation but not
for HypC–HypD complex formation

Previous studies have shown that the cysteinyl residue at amino
acid position 41 in E. coli HypD is essential for maturase activity
[9,17] and because the CN� ligand from HypE can be transferred
to the HypCD complex [15], it is therefore conceivable that Cys41



Table 1
Determination of iron and sulfide content of the HypCStrep–HypD preparations.

Protein sample Non-heme Fe
(mol per mol of protein)

Sulfide
(mol per mol of protein)

Colorimetrica

HypCStrep–HypD (anaerobic) 5.9 ± 0.45 3.8 ± 0.24
HypCStrep–HypD (aerobic) 4.1 ± 0.3 3.1 ± 0.22
bHypCStrep–HypD (anaerobic) (5 mM EDTA) 3.9 ± 0.35 2.9 ± 0.39
HypCStrep–HypDC41A (anaerobic) 4.8 ± 0.4 3.8 ± 0.22
ICP-MSa

HypCStrep–HypD (anaerobic) 6.04 ± 0.01 n.dc

HypCStrep–HypD (aerobic) 4.24 ± 0.08 n.d
HypCStrep–HypD (5 mM EDTA) 4.05 ± 0.03 n.d
HypCStrep–HypDC41A (anaerobic) 4.88 ± 0.02 n.d

a Method used for iron determination. Molar ratios are calculated based on the molecular mass of a stoichiometric HypCStrep–HypD
complex. Data are the average of at least two independent determinations ± standard error.

b Anaerobically purified HypCStrep–HypD complex was treated with 5 mM EDTA under anaerobic conditions.
c n.d. not determined.

Fig. 2. FTIR spectra of purified HypCStrep–HypD complexes. Protein samples were dried under pure N2 on a three-reflection silicon ATR crystal. The displayed spectra are the
average of 1280 scans recorded at a spectral resolution of 4 cm�1. The absorptions spectra of the CO and CN� ligands are overlapped by the broad ‘waging mode’ of water,
which was substracted in the displayed range by a broad spline function. Bands in the IR spectrum of HypCStrep–HypD (black) were fitted to mixed Lorentz-Gauss functions
with maxima at 2096, 2073 and 1955 cm�1, respectively. Another Gauss was fitted to 2337 cm�1. No specific absorption in this region could be detected for the variant
HypCStrep–HypDC41A film (grey).
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is involved in coordinating the CN� and CO ligands. In order to test
this hypothesis, codon 41 in the hypD gene on plasmid pT-
hypDEFCStrep was mutated to one coding for alanine. To demon-
strate that the mutation caused inactivation of HypD, the resulting
plasmid, pT-hypDEFCStrep[C41A] was transformed into the hypD
mutant DHP-D [9] and the ability of HypDC41A to restore Hyd-1
and Hyd-2 enzyme activity to the mutant was monitored by en-
zyme-specific activity staining (Fig. 3) [25]. It should be noted that
in MC4100 the hyp genes on pT-hypDEFCStrep are expressed due
to inherent promoter activity on the plasmid backbone. Whilst
plasmid pT-hypDEFCStrep restored activity of both enzymes to
the mutant, pT-hypDEFCStrep[C41A] failed to restore the activity
of either enzyme.

Next, plasmid pT-hypDEFCStrep[C41A] was transformed into
BL21(DE3) and the HypCStrep–HypDC41A complex was purified ex-
actly as described for the wild-type complex (see Section 2). The
purified complex was indistinguishable from that containing na-
tive HypD and even included sub-stoichiometric amounts of HypE.
This contrasts with previous findings [17] in which the C41A vari-
ant of HypD could not be isolated complexed with HypCStrep. In the
former study, however, the hypC and hypD genes were expressed
from separate plasmids and our findings have indicated that a
stable complex containing stoichiometric amounts of HypCStrep

and HypD can only be obtained when both genes are co-expressed
from a plasmid that includes the hypE and hypF genes. This, to-
gether with slight modifications in the isolation procedure, proba-
bly explains the discrepancy between the findings presented here
and those reported previously [17].

The UV–Vis spectrum of HypCStrep–HypDC41A revealed the flat,
broad absorption maximum at 420 nm due to the [4Fe–4S]2+ clus-
ter (Fig. 1B), however, the additional features at the lower wave-
lengths were clearly less intense. A metal analysis revealed
approximately 5 Fe and 4 S per mol of the complex (Table 1). FTIR
analysis of HypCStrep–HypDC41A did not reveal any absorption
bands corresponding to the wavenumbers characteristic of the
CO and CN� diatomic ligands observed for the native complex
(Fig. 2). Moreover, the absorption band corresponding to CO2 was
also absent from the HypCStrep–HypDC41A complex.

Taken together, these results demonstrate that the complex
containing HypDC41A retains the [4Fe–4S]2+ cluster but has less iron
than the native complex. It also lacks both the CN� and CO absorp-
tion bands strongly suggesting that it can no longer coordinate the



Fig. 3. In-gel hydrogenase activity analysis. Crude extracts (75 lg of protein)
derived from strain DHP-D (DhypD) transformed with plasmid pT-hypDEFCStrep or
pT-hypDEFCStrep[C41A] were analysed for Hyd-1 and Hyd-2 enzyme activity by
separation in native PAGE (7.5% w/v) under non-denaturing conditions followed by
staining for hydrogenase activity [25]. The stained bands corresponding to active
Hyd-1 and Hyd-2 are indicated. A weak hydrogenase-independent activity due to
formate dehydrogenase is indicated as Fdh. Lane 1, MC4100 (wild-type); Lane 2,
DHP-D (DhypD); lane 3, DHP-D + pT-hypDEFCStrep[C41A] (encoding HypDC41A);
lane 4, DHP-D + pT-hypDEFCStrep.
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Fe(CN)2CO cofactor. These results also indicate that Cys41 of HypD
is required to coordinate the Fe(CN)2CO cofactor and is necessary
to visualize the CO2 absorption band; however, it is not essential
for complex formation of HypD with HypC.

4. Conclusions

It was previously suggested [5,15,17] that a nucleophilic iron
acts as the acceptor for the cyanide ligand generated by the HypFE
maturases. Here we have demonstrated that the anaerobically
purified HypCStrep–HypD complex carries not only two CN� ligands
but also coordinates a single CO. The similar patterns of v(CN) and
v(CO) vibrations in the HypCD complex to those in the active site of
hydrogenases [4,31], together with the strong correlation between
the FTIR bands and the presence of additional iron atoms provide
compelling evidence for coordination of the diatomic ligands by
one of these Fe ions. Cys41 of HypD presumably ligates this cofac-
tor to HypD and we assume that Cys2 of HypC, which is essential
for HypC activity [20], also is involved in coordinating the cluster.

The oxygen-labile nature of this new Fe(CN)2CO cofactor coordi-
nation to HypCD also provides a possible explanation for the ob-
served instability towards oxygen of an in vitro hydrogenase
maturation system [34]. Future studies must now focus on the role
and nature of the second additional Fe ion in HypD, which presum-
ably is coordinated by the conserved and essential cysteinyl resi-
dues 69 and 72 [17], as well as the function of the [4Fe–4S]2+

cluster in either generating the CO ligand or modulating the oxida-
tion state of the second Fe ion. The finding of CO2 bound to HypD
and the strong correlation with the presence of the additional Fe
ions, along with the CN� and CO ligands, leads to the exciting pos-
sibility that this might be the source of the CO. Moreover, the fact
that a more stable HypCD complex is isolated when the hypCDEF
genes are co-expressed strongly suggests that these four proteins
form a complex in vivo, confirming earlier findings [15], and this
is presumably necessary to orchestrate Fe(CN)2CO cofactor biosyn-
thesis and insertion into the precursor of the large subunit. These
studies further highlight the importance of sulphur chemistry in
biosynthesis of the active site cofactor of [NiFe]-hydrogenases.
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