540 research outputs found

    Magnetism and superconductivity at LAO/STO-interfaces: the role of Ti 3d interface electrons

    Full text link
    Ferromagnetism and superconductivity are in most cases adverse. However, recent experiments reveal that they coexist at interfaces of LaAlO3 and SrTiO3. We analyze the magnetic state within density functional theory and provide evidence that magnetism is not an intrinsic property of the two-dimensional electron liquid at the interface. We demonstrate that the robust ferromagnetic state is induced by the oxygen vacancies in SrTiO3- or in the LaAlO3-layer. This allows for the notion that areas with increased density of oxygen vacancies produce ferromagnetic puddles and account for the previous observation of a superparamagnetic behavior in the superconducting state.Comment: 5 pages, 4 figures, to appear in Physical Review B (Rapid Communications

    Non conventional screening of the Coulomb interaction in low dimensional and finite size system

    Get PDF
    We study the screening of the Coulomb interaction in non polar systems by polarizable atoms. We show that in low dimensions and small finite size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short range interaction is strongly screened and the long range interaction is anti-screened thereby strongly reducing the gradient of the Coulomb interaction and therefore the correlation effects. We argue that this effect explains the success of mean field single particle theories for large molecules.Comment: 4 pages, 5 figure

    The parenting task: parent's concerns and where they would seek help

    Get PDF
    Governments are concerned to promote positive parenting but it is difficult to know how and where to target the necessary support. How should we listen to the concerns expressed by parents themselves? Social work and health care professionals and those involved in developing parenting programmes tend to base their interventions on their experiences with families already in crisis. This paper reports on a survey of the views of two groups of parents: a community sample and a small group of parents involved in a young parent's project. Issues, which concern the parents, are identified as well as consideration of which agencies might be best placed to address these. Parents were most likely to approach their children's school or doctor for information, advice, or support. Parents were found to be reluctant to approach social work agencies

    Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity

    Get PDF
    The analysis of x-ray reflectivity data from artificial heterostructures usually relies on the homogeneity of optical properties of the constituent materials. However, when the x-ray energy is tuned to an absorption edge, this homogeneity no longer exists. Within the same material, spatial regions containing elements at resonance will have optical properties very different from regions without resonating sites. In this situation, models assuming homogeneous optical properties throughout the material can fail to describe the reflectivity adequately. As we show here, resonant soft x-ray reflectivity is sensitive to these variations, even though the wavelength is typically large as compared to the atomic distances over which the optical properties vary. We have therefore developed a scheme for analyzing resonant soft x-ray reflectivity data, which takes the atomic structure of a material into account by "slicing" it into atomic planes with characteristic optical properties. Using LaSrMnO4 as an example, we discuss both the theoretical and experimental implications of this approach. Our analysis not only allows to determine important structural information such as interface terminations and stacking of atomic layers, but also enables to extract depth-resolved spectroscopic information with atomic resolution, thus enhancing the capability of the technique to study emergent phenomena at surfaces and interfaces.Comment: Completely overhauled with respect to the previous version due to peer revie

    Polarization dependence of x-ray absorption spectra in Na_xCoO_2

    Full text link
    In order to shed light on the electronic structure of Na_xCoO_2, and motivated by recent Co L-edge X-ray absorption spectra (XAS) experiments with polarized light, we calculate the electronic spectrum of a CoO_6 cluster including all interactions between 3d orbitals. We obtain the ground state for two electronic occupations in the cluster that correspond nominally to all O in the O^{-2} oxidation state, and Co^{+3} or Co^{+4}. Then, all excited states obtained by promotion of a Co 2p electron to a 3d electron, and the corresponding matrix elements are calculated. A fit of the observed experimental spectra is good and points out a large Co-O covalency and cubic crystal field effects, that result in low spin Co 3d configurations. Our results indicate that the effective hopping between different Co atoms plays a major role in determining the symmetry of the ground state in the lattice. Remaining quantitative discrepancies with the XAS experiments are expected to come from composition effects of itineracy in the ground and excited states.Comment: 10 pages, 4 figure

    Linear Response Calculations of Lattice Dynamics in Strongly Correlated Systems

    Full text link
    We introduce a new linear response method to study the lattice dynamics of materials with strong correlations. It is based on a combination of dynamical mean field theory of strongly correlated electrons and the local density functional theory of electronic structure of solids. We apply the method to study the phonon dispersions of a prototype Mott insulator NiO. Our results show overall much better agreement with experiment than the corresponding local density predictions.Comment: 4 pages, 2 figure

    Spectroscopy of stripe order in La1.8Sr0.2NiO4 using resonant soft x-ray diffraction

    Get PDF
    Strong resonant enhancements of the charge-order and spin-order superstructure-diffraction intensities in La1.8Sr0.2NiO4 are observed when x-ray energies in the vicinity of the Ni L2,3 absorption edges are used. The pronounced photon-energy and polarization dependences of these diffraction intensities allow for a critical determination of the local symmetry of the ordered spin and charge carriers. We found that not only the antiferromagnetic order but also the charge-order superstructure resides within the NiO2 layers; the holes are mainly located on in-plane oxygens surrounding a Ni2+ site with the spins coupled antiparallel in close analogy to Zhang-Rice singlets in the cuprates.Comment: 4 pages, 3 figure

    Flux quantization and superfluid weight in doped antiferromagnets

    Full text link
    Doped antiferromagnets, described by a t-t'-J model and a suitable 1/N expansion, exhibit a metallic phase-modulated antiferromagnetic ground state close to half-filling. Here we demonstrate that the energy of latter state is an even periodic function of the external magnetic flux threading the square lattice in an Aharonov-Bohm geometry. The period is equal to the flux quantum Φ0=2πc/q\Phi_{0}=2\pi\hbar c/q entering the Peierls phase factor of the hopping matrix elements. Thus flux quantization and a concomitant finite value of superfluid weight D_s occur along with metallic antiferromagnetism. We argue that in the context of the present effective model, whereby carriers are treated as hard-core bosons, the charge q in the associated flux quantum might be set equal to 2e. Finally, the superconducting transition temperature T_c is related to D_s linearly, in accordance to the generic Kosterlitz-Thouless type of transition in a two-dimensional system, signaling the coherence of the phase fluctuations of the condensate. The calculated dependence of T_c on hole concentration is qualitatively similar to that observed in the high-temperature superconducting cuprates.Comment: 5 pages, 2 figures, to be published in J. Phys. Condens. Matte
    corecore