629 research outputs found

    Magnetism and superconductivity at LAO/STO-interfaces: the role of Ti 3d interface electrons

    Full text link
    Ferromagnetism and superconductivity are in most cases adverse. However, recent experiments reveal that they coexist at interfaces of LaAlO3 and SrTiO3. We analyze the magnetic state within density functional theory and provide evidence that magnetism is not an intrinsic property of the two-dimensional electron liquid at the interface. We demonstrate that the robust ferromagnetic state is induced by the oxygen vacancies in SrTiO3- or in the LaAlO3-layer. This allows for the notion that areas with increased density of oxygen vacancies produce ferromagnetic puddles and account for the previous observation of a superparamagnetic behavior in the superconducting state.Comment: 5 pages, 4 figures, to appear in Physical Review B (Rapid Communications

    Ferromagnetic spin-polaron on complex lattices

    Full text link
    We present a simpler derivation of the exact solution of a spin-polaron in a ferromagnet and generalize it to complex lattices and/or longer range exchange interactions. As a specific example, we analyze a two-dimensional MnO2_2-like lattice (as in the ferromagnetic layers in LaMnO3_3) and discuss the properties of the resulting spin-polaron in various regimes. At strong couplings the solution is reminiscent of the Zhang-Rice singlet, however the electronic wavefunction involved in the singlet is dependent on the momentum of the singlet, and multiple bands may appear.Comment: 12 pages, 7 figure

    Non conventional screening of the Coulomb interaction in low dimensional and finite size system

    Get PDF
    We study the screening of the Coulomb interaction in non polar systems by polarizable atoms. We show that in low dimensions and small finite size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short range interaction is strongly screened and the long range interaction is anti-screened thereby strongly reducing the gradient of the Coulomb interaction and therefore the correlation effects. We argue that this effect explains the success of mean field single particle theories for large molecules.Comment: 4 pages, 5 figure

    Linear Response Calculations of Lattice Dynamics in Strongly Correlated Systems

    Full text link
    We introduce a new linear response method to study the lattice dynamics of materials with strong correlations. It is based on a combination of dynamical mean field theory of strongly correlated electrons and the local density functional theory of electronic structure of solids. We apply the method to study the phonon dispersions of a prototype Mott insulator NiO. Our results show overall much better agreement with experiment than the corresponding local density predictions.Comment: 4 pages, 2 figure

    The parenting task: parent's concerns and where they would seek help

    Get PDF
    Governments are concerned to promote positive parenting but it is difficult to know how and where to target the necessary support. How should we listen to the concerns expressed by parents themselves? Social work and health care professionals and those involved in developing parenting programmes tend to base their interventions on their experiences with families already in crisis. This paper reports on a survey of the views of two groups of parents: a community sample and a small group of parents involved in a young parent's project. Issues, which concern the parents, are identified as well as consideration of which agencies might be best placed to address these. Parents were most likely to approach their children's school or doctor for information, advice, or support. Parents were found to be reluctant to approach social work agencies

    Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity

    Get PDF
    The analysis of x-ray reflectivity data from artificial heterostructures usually relies on the homogeneity of optical properties of the constituent materials. However, when the x-ray energy is tuned to an absorption edge, this homogeneity no longer exists. Within the same material, spatial regions containing elements at resonance will have optical properties very different from regions without resonating sites. In this situation, models assuming homogeneous optical properties throughout the material can fail to describe the reflectivity adequately. As we show here, resonant soft x-ray reflectivity is sensitive to these variations, even though the wavelength is typically large as compared to the atomic distances over which the optical properties vary. We have therefore developed a scheme for analyzing resonant soft x-ray reflectivity data, which takes the atomic structure of a material into account by "slicing" it into atomic planes with characteristic optical properties. Using LaSrMnO4 as an example, we discuss both the theoretical and experimental implications of this approach. Our analysis not only allows to determine important structural information such as interface terminations and stacking of atomic layers, but also enables to extract depth-resolved spectroscopic information with atomic resolution, thus enhancing the capability of the technique to study emergent phenomena at surfaces and interfaces.Comment: Completely overhauled with respect to the previous version due to peer revie

    Polarization dependence of x-ray absorption spectra in Na_xCoO_2

    Full text link
    In order to shed light on the electronic structure of Na_xCoO_2, and motivated by recent Co L-edge X-ray absorption spectra (XAS) experiments with polarized light, we calculate the electronic spectrum of a CoO_6 cluster including all interactions between 3d orbitals. We obtain the ground state for two electronic occupations in the cluster that correspond nominally to all O in the O^{-2} oxidation state, and Co^{+3} or Co^{+4}. Then, all excited states obtained by promotion of a Co 2p electron to a 3d electron, and the corresponding matrix elements are calculated. A fit of the observed experimental spectra is good and points out a large Co-O covalency and cubic crystal field effects, that result in low spin Co 3d configurations. Our results indicate that the effective hopping between different Co atoms plays a major role in determining the symmetry of the ground state in the lattice. Remaining quantitative discrepancies with the XAS experiments are expected to come from composition effects of itineracy in the ground and excited states.Comment: 10 pages, 4 figure

    Charge order driven by Fermi-arc instability in Bi2201

    Full text link
    The understanding of the origin of superconductivity in cuprates has been hindered by the apparent diversity of intertwining electronic orders in these materials. We combined resonant x-ray scattering (REXS), scanning-tunneling microscopy (STM), and angle-resolved photoemission spectroscopy (ARPES) to observe a charge order that appears consistently in surface and bulk, and in momentum and real space within one cuprate family, Bi2201. The observed wave vectors rule out simple antinodal nesting in the single-particle limit but match well with a phenomenological model of a many-body instability of the Fermi arcs. Combined with earlier observations of electronic order in other cuprate families, these findings suggest the existence of a generic charge-ordered state in underdoped cuprates and uncover its intimate connection to the pseudogap regime.Comment: A high resolution version can be found at http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/Bi2201_CDW_REXS_STM.pdf
    corecore