The understanding of the origin of superconductivity in cuprates has been
hindered by the apparent diversity of intertwining electronic orders in these
materials. We combined resonant x-ray scattering (REXS), scanning-tunneling
microscopy (STM), and angle-resolved photoemission spectroscopy (ARPES) to
observe a charge order that appears consistently in surface and bulk, and in
momentum and real space within one cuprate family, Bi2201. The observed wave
vectors rule out simple antinodal nesting in the single-particle limit but
match well with a phenomenological model of a many-body instability of the
Fermi arcs. Combined with earlier observations of electronic order in other
cuprate families, these findings suggest the existence of a generic
charge-ordered state in underdoped cuprates and uncover its intimate connection
to the pseudogap regime.Comment: A high resolution version can be found at
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/Bi2201_CDW_REXS_STM.pdf