12 research outputs found

    Fecal transmission of AA amyloidosis in the cheetah contributes to high incidence of disease

    No full text
    AA amyloidosis is one of the principal causes of morbidity and mortality in captive cheetahs (Acinonyx jubatus), which are in danger of extinction, but little is known about the underlying mechanisms. Given the transmissible characteristics of AA amyloidosis, transmission between captive cheetahs may be a possible mechanism involved in the high incidence of AA amyloidosis. In this study of animals with AA amyloidosis, we found that cheetah feces contained AA amyloid fibrils that were different from those of the liver with regard to molecular weight and shape and had greater transmissibility. The infectious activity of fecal AA amyloid fibrils was reduced or abolished by the protein denaturants 6 M guanidine·HCl and formic acid or by AA immunodepletion. Thus, we propose that feces are a vehicle of transmission that may accelerate AA amyloidosis in captive cheetah populations. These results provide a pathogenesis for AA amyloidosis and suggest possible measures for rescuing cheetahs from extinction

    Apolipoprotein A-II induces acute-phase response associated AA amyloidosis in mice through conformational changes of plasma lipoprotein structure

    Get PDF
    Abstract During acute-phase response (APR), there is a dramatic increase in serum amyloid A (SAA) in plasma high density lipoproteins (HDL). Elevated SAA leads to reactive AA amyloidosis in animals and humans. Herein, we employed apolipoprotein A-II (ApoA-II) deficient (Apoa2 −/− ) and transgenic (Apoa2Tg) mice to investigate the potential roles of ApoA-II in lipoprotein particle formation and progression of AA amyloidosis during APR. AA amyloid deposition was suppressed in Apoa2 −/− mice compared with wild type (WT) mice. During APR, Apoa2 −/− mice exhibited significant suppression of serum SAA levels and hepatic Saa1 and Saa2 mRNA levels. Pathological investigation showed Apoa2 −/− mice had less tissue damage and less inflammatory cell infiltration during APR. Total lipoproteins were markedly decreased in Apoa2 −/− mice, while the ratio of HDL to low density lipoprotein (LDL) was also decreased. Both WT and Apoa2 −/− mice showed increases in LDL and very large HDL during APR. SAA was distributed more widely in lipoprotein particles ranging from chylomicrons to very small HDL in Apoa2 −/− mice. Our observations uncovered the critical roles of ApoA-II in inflammation, serum lipoprotein stability and AA amyloidosis morbidity, and prompt consideration of therapies for AA and other amyloidoses, whose precursor proteins are associated with circulating HDL particles

    Cardioprotective Cryptides Derived from Fish and Other Food Sources: Generation, Application, and Future Markets

    No full text
    corecore