76 research outputs found

    Rock magnetism of tiny exsolved magnetite in plagioclase from a Paleoarchean granitoid in the Pilbara craton

    Get PDF
    金沢大学理工研究域地球社会基盤学系Granitoids are widespread in Precambrian terranes as well as the Phanerozoic orogenic belts, but they have garnered little attention in paleomagnetic studies, because granitoids often contain abundant coarse-grained, magnetically unstable oxides. In this study, the first example of tiny, needle-shaped, exsolved oxides in plagioclase in a Paleoarchean granitoid is reported. The magnetic properties of single plagioclase crystals with the exsolved oxide inclusions have been studied to determine their paleomagnetic recording fidelity. Demagnetization experiments and hysteresis parameters indicate that the oxide inclusions are near stoichiometric magnetite and magnetically very stable. First-order reversal curve (FORC) diagrams reveal negligible magnetostatic interactions. Minimal interactions are also reflected by very efficient acquisition of anhysteretic remanent magnetization. Single plagioclase crystals exhibit strong magnetic remanence anisotropies, which require corrections to their paleodirectional and paleointensity data. Nonetheless, quantitative consideration of anisotropy tensors of the single plagioclase crystals indicates that the bias can be mitigated by properly averaging data from a few tens of single crystals. From the nonlinear thermoremanence acquisition of the plagioclase crystals, we estimate that the plagioclase crystals can reconstruct paleointensity up to 50 μT. Local metamorphic condition suggests that those magnetite may carry remanence of ∼3.2 to 3.3 Ga. We suggest that exsolved magnetite in granitoids is potentially a suitable target for the study of the early history of the geomagnetic field, and prompt detailed microscopic investigations as well as paleomagnetic tests to constrain the age of remanence. © 2014. American Geophysical Union. All Rights Reserved

    Geology of the Eoarchean, >3.95Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: the oldest geological evidence for plate tectonics

    Get PDF
    The Earth is a unique planet, which has been highly evolved, diversified and complicated through geologic time, and underwent many key events, including giant impact, magma ocean, core formation, large-scale mantle differentiation and late heavy bombardment, especially in its dawn. But, our knowledge of early Earth is limited due to the lack of the Hadean supracrustal rocks. The supracrustal rocks with the Eoarchean ages provide key evidence for the Earth's early evolution, but few supracrustal rocks have been comprehensively investigated. Therefore, we mapped in seven areas of the Saglek Block, northern Labrador, where ancient supracrustal sequences are interleaved with a diverse assemblage of orthogneisses. Early studies suggested that some of them have the Mesoarchean ages because of the lack of the Mesoarchean Saglek dyke, but we found the Saglek dykes in the areas to recognize the Eoarchean Nulliak supracrustal rocks and Uivak Gneiss in all the areas. Recent reassessment of U–Pb dating and cathodoluminescence observation of zircons from the oldest suites of the Uivak Gneiss showed that the Uivak Gneiss has the Eoarchean age, > 3.95 Ga, and forms the Iqaluk–Uivak Gneiss series. Because our geological survey clearly showed that the Iqaluk–Uivak Gneisses were intruded into the Nulliak supracrustal belts, the Nulliak supracrustal rocks are the oldest supracrustal rock in the world. The supracrustal belts consist of piles of fault-bounded blocks, which are composed of the ultramafic rocks, mafic rocks and sedimentary rocks in ascending order, similar to modern ocean plate stratigraphy (OPS). In addition, small-scale duplex structures are found over the areas. The presence of duplex structure and OPS indicates that the > 3.95 Ga Nulliak supracrustal belts originate from an accretionary complex. The presence of the accretionary complex, ophiolite and granitic continental crust provides the oldest evidence for the plate tectonics on the early Earth

    Chromobox 2 Expression Predicts Prognosis after Curative Resection of Oesophageal Squamous Cell Carcinoma

    Get PDF
    Background/Aim: To investigate the function of chromobox 2 (CBX2) in oesophageal squamous cell carcinoma (OSCC). Materials and Methods: We used real-time quantitative reverse transcription PCR (qRT-PCR) and immunohisto - chemistry to determine CBX2 expression levels in 13 human OSCC cell lines and clinical specimens of two independent cohorts of patients with OSCC. Results: PCR array analysis revealed that CBX2 was co-ordinately expressed with WNT5B in OSCC cell lines. RT-qPCR analysis of clinical samples revealed a high tumour-specific CBX2 expression compared with normal oesophageal tissues. High CBX2 expression was significantly associated with shorter disease-specific survival, hematogenous recurrence, and overall recurrence. Analysis of tissue microarrays of one cohort revealed that patients with higher CBX2 levels tended to have a shorter disease-specific survival. Conclusion: CBX2 overexpression in OSCC tissues may serve as a novel biomarker for predicting survival and hematogenous recurrence

    Conceptual Design of Rapid Circular Particle Accelerator Using High-Gradient Resonant Cavities with Fixed Frequency

    Get PDF
    A new high-energy particle accelerator with static combined type of magnetic field and high-gradient resonant cavities is introduced for muon acceleration up to 300 MeV and proton acceleration up to 400 MeV. The accelerator concept is expected to realize Mpps-class rapid cycling high-energy particle acceleration in circular particle accelerators. Conceptual designs of the circular accelerator are discussed with an emphasis on short lifetime particles. The fundamental concept of particle acceleration and the related practical issues, which should be discussed when designing the accelerators, are described as well

    Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.gca.2015.02.025 © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/To improve estimates of the extent of ocean oxygenation during the late Ediacaran Period, we measured the U and Mo isotope compositions of euxinic (anoxic and sulfidic) organic-rich mudrocks (ORM) of Member IV, upper Doushantuo Formation, South China. The average d238U of most samples is 0.24 ± 0.16& (2SD; relative to standard CRM145), which is slightly higher than the average d238U of 0.02 ± 0.12& for restricted Black Sea (deep-water Unit I) euxinic sediments and is similar to a modeled d238U value of 0.2& for open ocean euxinic sediments in the modern well-oxygenated oceans. Because 238U is preferentially removed to euxinic sediments compared to 235U, expanded ocean anoxia will deplete seawater of 238U relative to 235U, ultimately leading to deposition of ORM with low d238U. Hence, the high d238U of Member IV ORM points to a common occurrence of extensive ocean oxygenation ca. 560 to 551 Myr ago. The Mo isotope composition of sediments deposited from strongly euxinic bottom waters ([H2S]aq >11 lM) either directly records the global seawater Mo isotope composition (if Mo removal from deep waters is quantitative) or represents a minimum value for seawater (if Mo removal is not quantitative). Near the top of Member IV, d98Mo approaches the modern seawater value of 2.34 ± 0.10&. High d98Mo points to widespread ocean oxygenation because the preferential removal of isotopically light Mo to sediments occurs to a greater extent in O2-rich compared to O2-deficient marine environments. However, the d98Mo value for most Member IV ORM is near 0&(relative to standard NIST SRM 3134 = 0.25&), suggesting extensive anoxia. The low d98Mo is at odds with the high Mo concentrations of Member IV ORM, which suggest a large seawater Mo inventory in well-oxygenated oceans, and the high d238U. Hence, we propose that the low d98Mo of most Member IV ORM was fractionated from contemporaneous seawater. Possible mechanisms driving this isotope fractionation include: (1) inadequate dissolved sulfide for quantitative thiomolybdate formation and capture of a seawater-like d98Mo signature in sediments or (2) delivery of isotopically light Mo to sediments via a particulate Fe–Mn oxyhydroxide shuttle. A compilation of Mo isotope data from euxinic ORM suggests that there were transient episodes of extensive ocean oxygenation that break up intervals of less oxygenated oceans during late Neoproterozoic and early Paleozoic time. Hence, Member IV does not capture irreversible deep ocean oxygenation. Instead, complex ocean redox variations likely marked the transition from O2-deficient Proterozoic oceans to widely oxygenated later Phanerozoic oceans.National Science Foundation NASA Astrobiology Institute Agouron Institute Natural Sciences and Engineering Research Council of Canada Discovery Gran

    Tonian-Cryogenian boundary sections of Argyll, Scotland

    Get PDF
    The Tonian-Cryogenian System boundary is to be defined at a GSSP (Global Boundary Stratigraphic Section and Point) beneath the first evidence of widespread glaciation. A candidate lies within the Dalradian Supergroup of Scotland and Ireland, which is least deformed and metamorphosed in Argyll, western Scotland. We present new stratigraphic profiles and interpretations from the Isle of Islay and the Garvellach Islands, update the chemostratigraphy of the Appin Group Tonian carbonates underlying the thick (ca. 1 km) glacigenic Port Askaig Formation (PAF) and demonstrate an environmental transition at the contact. The Appin Group forms a regionally extensive, >4 km-thick, succession of limestones, shales and sandstones deposited on a marine shelf. On Islay, the upper part of the lithostratigraphy has been clarified by measuring and correlating two sections containing distinctive stratigraphic levels including molar tooth structure, oolite, stromatolitic dolomite and intraclastic microbial mounds. Significantly deeper erosion at the unconformity at the base of the overlying PAF is demonstrated in the southern section. Carbonate facies show a gradual decline in δ13CVPDB from +5 to +2‰ upwards. In NE Garbh Eileach (Garvellach Islands), a continuously exposed section of Appin Group carbonates, 70 m thick, here designated the Garbh Eileach Formation (GEF), lies conformably beneath the PAF. The GEF and the GEF-PAF boundary relationships are re-described with new sedimentological logs, petrological and stable isotope data. Interstratified limestone and dolomicrosparite with δ13C of −4 to −7‰ (a feature named the Garvellach anomaly, replacing the term Islay anomaly) are overlain by dolomite in which the isotope signature becomes weakly positive (up to +1‰) upwards. Shallow subtidal conditions become peritidal upwards, with evidence of wave and storm activity. Gypsum pseudomorphs and subaerial exposure surfaces are common near the top of the GEF. The basal diamictite (D1) of the PAF is rich in carbonate clasts similar to slightly deeper-water parts of the underlying succession. D1 is typically several metres thick with interstratified sandstone and conglomerate, but dies out laterally. Scattered siliciclastic coarse sandstone to pebble conglomerate with dropstones associated with soft-sediment deformation is interbedded with carbonate below and above D1. Dolomite beds with derived intraclasts and gypsum pseudomorphs are found above D1 (or equivalent position, where D1 is absent). Published and new Sr isotope studies, including successive leach data, demonstrate primary Tonian 87Sr/86Sr values of 0.7066–0.7069 on Islay, decreasing to 0.7064–0.7066 in the younger GEF limestones on the Garvellachs, with 1700–2700 ppm Sr. Other typically Tonian characteristics of the carbonates are the Sr-rich nature of limestones, molar tooth structure, and dolomitized peritidal facies with evidence of aridity. Seabed surveys suggesting uniformly-dipping strata and shallow borehole core material illustrate the potential for extending the Tonian record offshore of the Garvellachs. A candidate Tonian-Cryogenian GSSP is proposed on Garbh Eileach within the smooth δ13C profile at the cross-over to positive δ13C signatures, 4 m below the first occurrence of ice-rafted sediment and 9 m below the first diamictite. Although lacking radiometric constraints or stratigraphically significant biotas or biomarkers, the Scottish succession has a thick and relatively complete sedimentary record of glaciation, coherent carbon and strontium chemostratigraphy, lateral continuity of outcrops and 100% exposure at the proposed boundary interval

    BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains

    Get PDF
    The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed

    Reactions between olivine and CO2-rich seawater at 300 °C: Implications for H2 generation and CO2 sequestration on the early Earth

    Get PDF
    To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth, we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 °C and 500 bars. During the experiments, the total carbonic acid concentration (ΣCO2) in the fluid decreased from approximately 65 to 9 mmol/kg. Carbonate minerals, magnesite, and subordinate amount of dolomite were formed via the water-rock interaction. The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h, which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature. As seen in previous hydrothermal experiments using komatiite, ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration. Considering carbonate mineralogy over the temperature range of natural hydrothermal fields, H2 generation is likely suppressed at temperatures below approximately 300 °C due to the formation of the Mg-bearing carbonates. Nevertheless, H2 concentration in fluid at 300 °C could be still high due to the temperature dependency of magnetite stability in ultramafic systems. Moreover, the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth. Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle. This process may have reduced the huge initial amount of CO2 on the surface of the early Earth. Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle, even in hot subduction zones

    Redox history of the Three Gorges region during the Ediacaran and Early Cambrian as indicated by the Fe isotope

    No full text
    The Ediacaran–Cambrian transition is characterized by numerous events such as the emergence of large multi-cellular metazoans and surface environmental disturbances. Based on geological evidence, it has been proposed that this transition coincided with the increase in the atmospheric oxygen level that was key to the evolution of life. Even though ancient redox conditions can be inferred from the composition of sedimentary iron mineral species, this method is not necessarily applicable to all rocks. In the Earth system, the cycling of iron is of considerable interest owing to its sensitivity to redox conditions. Information regarding the paleo-oceanic iron cycle is revealed in the iron isotopic composition of iron-bearing minerals. Unfortunately, only limited iron isotopic data exists for Ediacaran- to Cambrian-period oceans. To circumvent this deficiency, we drilled a fossiliferous Ediacaran to Early Cambrian sedimentary succession in the Three Gorges region, South China. We analyzed the iron isotope ratios (δ56/54Fe) of pyrite grains in the drill cores using laser ablation multi collector inductively coupled plasma mass spectrometry. The results demonstrate large variations in δ56/54Fe, from −1.6 to 1.6‰, and positive iron isotope ratios are observed in many successions. The presence of positive δ56/54Fe in pyrite indicates that the ferrous iron in the seawater was partially oxidized, suggesting that seawater at Three Gorges was ferruginous during the Ediacaran and Early Cambrian periods. However, aggregated pyrite grains in organic carbon-rich black shales at Member 4 of the Doushantuo Formation and the base of the Shuijingtuo Formation yield near-zero δ56/54Fe values; this suggests that the ocean was transiently dominated by sulfidic conditions during these periods. Notably negative δ56/54Fe values, lower than −1‰, can be interpreted as a signature of DIR. The DIR also might contribute in part to the re-mineralization of organic matter during the largest negative carbon isotope anomaly in the Ediacaran
    corecore