332 research outputs found

    <i>Thalassomonas loyana</i> sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef

    Get PDF
    The taxonomic position of the coral pathogen strain CBMAI 722T was determined on the basis of molecular and phenotypic data. We clearly show that the novel isolate CBMAI 722T is a member of the family Colwelliaceae, with Thalassomonas ganghwensis as the nearest neighbour (95 % 16S rRNA gene sequence similarity). CBMAI 722T can be differentiated from its nearest neighbour on the basis of phenotypic and chemotaxonomic features, including the utilization of cellobiose and l-arginine, the production of alginase and amylase, but not oxidase, and the presence of the fatty acids 12 : 0 3-OH and 14 : 0, but not 10 : 0 or 15 : 0. The DNA G+C content of CBMAI 722T is 39·3 mol%. We conclude that this strain represents a novel species for which we propose the name Thalassomonas loyana sp. nov., with the type strain CBMAI 722T (=LMG 22536T). This is the first report of the involvement of a member of the family Colwelliaceae in coral white plague-like disease

    <i>Vibrio superstes</i> sp. nov., isolated from the gut of Australian abalones <i>Haliotis laevigata</i> and <i>Haliotis rubra</i>

    Get PDF
    Five alginolytic, facultatively anaerobic, non-motile bacteria were isolated from the gut of abalones Haliotis laevigata and Haliotis rubra. Phylogenetic analyses based on 16S rDNA data indicated that these strains are related closely to Vibrio halioticoli (98 % 16S rDNA sequence similarity). DNA–DNA hybridization and fluorescent amplified fragment length polymorphism fingerprinting demonstrated that the five strains constituted a single species that was different from all currently known vibrios. The name Vibrio superstes sp. nov. (type strain, LMG 21323T=IAM 15009T=G3-29T; DNA G+C content, 48·0–48·9 mol%) is proposed to encompass this novel taxon. Several phenotypic features were disclosed that discriminate V. superstes from other Vibrio species: V. superstes sp. nov. and V. halioticoli can be differentiated on the basis of 17 traits (indole production, β-galactosidase test and assimilation of 15 carbon compounds)

    <i>Vibrio gallicus</i> sp. nov., isolated from the gut of the French abalone <i>Haliotis tuberculata</i>

    Get PDF
    Five alginolytic, facultatively anaerobic, non-motile bacteria were isolated from the gut of the abalone Haliotis tuberculata. Phylogenetic analyses based on 16S rDNA data indicated that these strains are related to Vibrio wodanis, Vibrio salmonicida, Vibrio logei and Vibrio fischeri (but with Vibrio gallicus sp. nov. (type strain, CIP 107863T=LMG 21878T=HT2-1T; DNA G+C content, 43·6–44·3 mol%) is proposed for this novel taxon. Several phenotypic features were disclosed that discriminated V. gallicus from other Vibrio species: V. gallicus can be differentiated from Vibrio halioticoli on the basis of four traits (β-galactosidase test and assimilation of three carbon compounds) and from Vibrio superstes by 16 traits

    Diversity of Antibiotic-Active Bacteria Associated with the Brown Alga Laminaria saccharina from the Baltic Sea

    Get PDF
    Bacteria associated with the marine macroalga Laminaria saccharina, collected from the Kiel Fjord (Baltic Sea, Germany), were isolated and tested for antimicrobial activity. From a total of 210 isolates, 103 strains inhibited the growth of at least one microorganism from the test panel including Gram-negative and Gram-positive bacteria as well as a yeast. Most common profiles were the inhibition of Bacillus subtilis only (30%), B. subtilis and Staphylococcus lentus (25%), and B. subtilis, S. lentus, and Candida albicans (11%). In summary, the antibiotic-active isolates covered 15 different activity patterns suggesting various modes of action. On the basis of 16S rRNA gene sequence similarities &gt;99%, 45 phylotypes were defined, which were classified into 21 genera belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Phylogenetic analysis of 16S rRNA gene sequences revealed that four isolates possibly represent novel species or even genera. In conclusion, L. saccharina represents a promising source for the isolation of new bacterial taxa and antimicrobially active bacteria

    First detection of a Vssc allele V1016G conferring a high level of insecticide resistance in Aedes albopictus collected from Europe (Italy) and Asia (Vietnam), 2016. A new emerging threat to controlling arboviral diseases

    Get PDF
    Introduction Aedes albopictus (Skuse) is an important vector of arboviral diseases, including dengue, chikungunya and Zika virus disease. Monitoring insecticide resistance and mechanisms by which the mosquito develops resistance is crucial to minimise disease transmission. Aim To determine insecticide resistance status and mechanisms in Ae. albopictus from different geographical regions. Methods We sampled 33 populations of Ae. albopictus from Asia, Europe and South America, and tested these for susceptibility to permethrin, a pyrethroid insecticide. In resistant populations, the target site for pyrethroids, a voltage-sensitive sodium channel (Vssc) was genotyped. Three resistant sub-strains, each harbouring a resistance allele homozygously, were established and susceptibilities to three different pyrethroids (with and without a cytochrome P450 inhibitor) were assayed. Results Most populations of Ae. albopictus tested were highly susceptible to permethrin but a few from Italy and Vietnam (4/33), exhibited high-level resistance. Genotyping studies detected a knockdown resistance (kdr) allele V1016G in Vssc for the first time in Ae. albopictus. Two previously reported kdr alleles, F1534C and F1534S, were also detected. The bioassays indicated that the strain homozygous for the V1016G allele showed much greater levels of pyrethroid resistance than other strains harbouring F1534C or F1534S. Conclusion The V1016G allele was detected in bothAsian and Italian Ae. albopictus populations, thus a spread of this allele beyond Italy in Europe cannot be ruled out. This study emphasises the necessity to frequently and regularly monitor the V1016G allele in Ae. albopictus, particularly where this mosquito species is the main vector of arboviruses

    Prior Mating Experience Modulates the Dispersal of Drosophila in Males More Than in Females

    Get PDF
    Cues from both an animal’s internal physiological state and its local environment may influence its decision to disperse. However, identifying and quantifying the causative factors underlying the initiation of dispersal is difficult in uncontrolled natural settings. In this study, we automatically monitored the movement of fruit flies and examined the influence of food availability, sex, and reproductive status on their dispersal between laboratory environments. In general, flies with mating experience behave as if they are hungrier than virgin flies, leaving at a greater rate when food is unavailable and staying longer when it is available. Males dispersed at a higher rate and were more active than females when food was unavailable, but tended to stay longer in environments containing food than did females. We found no significant relationship between weight and activity, suggesting the behavioral differences between males and females are caused by an intrinsic factor relating to the sex of a fly and not simply its body size. Finally, we observed a significant difference between the dispersal of the natural isolate used throughout this study and the widely-used laboratory strain, Canton-S, and show that the difference cannot be explained by allelic differences in the foraging gene
    corecore