2,282 research outputs found

    Theory of Josephson effect in chiral p-wave superconductor / diffusive normal metal / chiral p-wave superconductor junctions

    Get PDF
    We study the Josephson effect between chiral p-wave superconductor / diffusive normal metal (DN) / chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is believed to be a pairing state in Sr2RuO4. It is shown that the Cooper pairs induced in DN have an odd-frequency spin-triplet s-wave symmetry, where pair amplitude is an odd function of Matsubara frequency. Despite the peculiar symmetry properties of the Cooper pairs, the behavior of the Josephson current is rather conventional. We have found that the current phase relation is almost sinusoidal and the Josephson current is proportional to exp(-L/xi), where xi is the coherence length of the Cooper pair in DN and L is the length of DN. The Josephson current between CP / diffusive ferromagnet metal (DF) / CP junctions is also calculated. It is shown that the 0-pi transition can be realized by varying temperature or junction length L similar to the case of conventional s-wave junctions. These results may serve as a guide to study superconducting state of Sr2RuO4.Comment: 9 pages, 9 figure

    Multivalued memory effects in electronic phase-change manganites controlled by Joule heating

    Full text link
    Non-volatile multivalued memory effects caused by magnetic fields, currents, and voltage pulses are studied in Nd_{0.65}Ca_{0.35}MnO_3 and (Nd_{1-y}Sm_{y})_{0.5}Sr_{0.5}MnO_3 (y=0.75) single crystals in the hysteretic region between ferromagnetic metallic and charge-ordered insulating states. The current/voltage effects observed in this study are explained by the self-heating effect, which enable us to control the colossal electroresistance effects. This thermal-cycle induced switching between electronic solid and liquid states can be regarded as electronic version of atomic crystal/amorphous transitions in phase-change chalcogenides.Comment: 5 pages, 4 figures. to appear in Phys. Rev.

    Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3_{3}/SrTi0.99_{0.99}Nb0.01_{0.01}O3_{3}

    Full text link
    Transport properties have been studied for a perovskite heterojunction consisting of SrRuO3_{3} (SRO) film epitaxially grown on SrTi0.99_{0.99}Nb0.01_{0.01}O3_{3} (Nb:STO) substrate. The SRO/Nb:STO interface exhibits rectifying current-voltage (II-VV) characteristics agreeing with those of a Schottky junction composed of a deep work-function metal (SRO) and an nn-type semiconductor (Nb:STO). A hysteresis appears in the II-VV characteristics, where high resistance and low resistance states are induced by reverse and forward bias stresses, respectively. The resistance switching is also triggered by applying short voltage pulses of 1 μ\mus - 10 ms duration.Comment: 3 pages, 3 figures, Appl. Phys. Lett., in pres

    Angular dependence of Josephson currents in unconventional superconducting junctions

    Get PDF
    Josephson effect in junctions between unconventional superconductors is studied theoretically within the model describing the effects of interface roughness. The particularly important issue of applicability of the frequently used Sigrist-Rice formula for Josephson current in d-wave superconductor / insulator / d-wave superconductor junctions is addressed. We show that although the SR formula is not applicable in the ballistic case, it works well for rough interfaces when the diffusive normal metal regions exist between the d-wave superconductor and the insulator. It is shown that the SR approach only takes into account the component of the d-wave pair potential symmetric with respect to an inversion around the plane perpendicular to the interface. Similar formula can be derived for general unconventional superconductors with arbitrary angular momentum l.Comment: 4 pages, 4 figure

    Resistive switching effects on the spatial distribution of phases in metal-complex oxide interfaces

    Full text link
    In order to determine the key parameters that control the resistive switching mechanism in metal-complex oxides interfaces, we have studied the electrical properties of metal / YBa2Cu3O7-d (YBCO) interfaces using metals with different oxidation energy and work function (Au, Pt, Ag) deposited by sputtering on the surface of a YBCO ceramic sample. By analyzing the IV characteristics of the contact interfaces and the temperature dependence of their resistance, we inferred that ion migration may generate or cancel conducting filaments, which modify the resistance near the interface, in accordance with the predictions of a recent model.Comment: 3 pages, 5 figures, to be published in Physica B. Corresponding author: C. Acha ([email protected]

    Multi-Temporal Remote Sensing of Landuse Dynamics in Zaria, Nigeria

    Get PDF
    This study assesses the impact of growth of Zaria town on the changing pattern of the different landuse/land cover types within and around the town, using Remote Sensing and GIS techniques. Zaria is witnessing rapid rate of urbanization as a consequence of the establishment of the Ahmadu Bello University at Zaria in 1962. It is one of the fastest growing settlements in northern Nigeria. The increasing population from the University community has led to serious competition for land among different landuse types. Multi-temporal satellite imageries for three and half decades (1973, 1990, 1999 and 2006) were used to assess the impact of the growth of Zaria town on the changing pattern of the different landuse/land cover (LULC) types using Remote Sensing GIS techniques. The images were transformed, enhanced, sampled and re-sampled, classified and crossed for change detection. Results of the analysis showed that although there are year to year variations in area under each landuse type, net change detection showed that built up area has been on the increase each year encroaching on scrubland, farmlands and fadama to shrink. Keywords: change detection, image crossing, multi-temporal, multi-spectral

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    Andreev bound states and tunneling characteristics of a non-centrosymmetric superconductor

    Full text link
    The tunneling characteristics of planar junctions between a normal metal and a non-centrosymmetric superconductor like CePt3Si are examined. It is shown that the superconducting phase with mixed parity can give rise to characteristic zero-bias anomalies in certain junction directions. The origin of these zero-bias anomalies are Andreev bound states at the interface. The tunneling characteristics for different directions allow to test the structure of the parity-mixed pairing state.Comment: 4 pages, 3 figure
    corecore