368 research outputs found

    The presence of (NRPS) and (PKS) genes at the deepsea hydrothermal field in the Aegean Sea

    Get PDF
    Deep-sea hydrothermal vents are characterized by extremely high concentrations of microorganisms in stark contrast to the surrounding sea bottom. Nevertheless, deepsea consumers do not rapidly remove the high biomass of prey from these communities maybe due to vent microbes’ chemical defenses which still remain largely unknown. Meanwhile, the detection of genes responsible for antimicrobial and cytotoxic activity such as non-ribosomal peptide synthases (NRPS) and polyketide (PKS) of deep-sea vent bacteria has not so far been attempted

    Polariton Condensate Transistor Switch

    Full text link
    A polariton condensate transistor switch is realized through optical excitation of a microcavity ridge with two beams. The ballistically ejected polaritons from a condensate formed at the source are gated using the 20 times weaker second beam to switch on and off the flux of polaritons. In the absence of the gate beam the small built-in detuning creates potential landscape in which ejected polaritons are channelled toward the end of the ridge where they condense. The low loss photon-like propagation combined with strong nonlinearities associated with their excitonic component makes polariton based transistors particularly attractive for the implementation of all-optical integrated circuits

    Ultra low energy results and their impact to dark matter and low energy neutrino physics

    Full text link
    We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such performance low energy calibration systems have been successfully developed: - A pulsed UV lamp extracting photoelectrons from the inner surface of the detector - Various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence which is unique performance for such large-massive detector. It opens a new window in dark matter and low energy neutrino search and may allow detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scatteringComment: 14 pages,16 figure

    Neutron spectroscopy with the Spherical Proportional Counter

    Full text link
    A novel large volume spherical proportional counter, recently developed, is used for neutron measurements. Gas mixtures of N2N_{2} with C2H6C_{2}H_{6} and pure N2N_{2} are studied for thermal and fast neutron detection, providing a new way for the neutron spectroscopy. The neutrons are detected via the 14N(n,p)C14{}^{14}N(n, p)C^{14} and 14N(n,α)B11{}^{14}N(n, \alpha)B^{11} reactions. Here we provide studies of the optimum gas mixture, the gas pressure and the most appropriate high voltage supply on the sensor of the detector in order to achieve the maximum amplification and better resolution. The detector is tested for thermal and fast neutrons detection with a 252Cf{}^{252}Cf and a 241Am−9Be{}^{241}Am-{}^{9}Be neutron source. The atmospheric neutrons are successfully measured from thermal up to several MeV, well separated from the cosmic ray background. A comparison of the spherical proportional counter with the current available neutron counters is also given.Comment: 7 pages, 10 figure

    Temperature dependence of the coherence in polariton condensates

    Full text link
    We present a time-resolved experimental study of the temperature effect on the coherence of traveling polariton condensates. The simultaneous detection of their emission both in real and reciprocal space allows us to fully monitor the condensates' dynamics. We obtain fringes in reciprocal space as a result of the interference between polariton wave packets (WPs) traveling with the same speed. The periodicity of these fringes is inversely proportional to the spatial distance between the interfering WPs. In a similar fashion, we obtain interference fringes in real space when WPs traveling in opposite directions meet. The visibility of both real- and reciprocal-space interference fringes rapidly decreases with increasing temperature and vanishes. A theoretical description of the phase transition, considering the coexistence of condensed and noncondensed particles, for an out-of-equilibrium condensate such as ours is still missing, yet a comparison with theories developed for atomic condensates allows us to infer a critical temperature for the BEC-like transition when the visibility goes to zeroE.R. acknowledges financial support from a Spanish FPI scholarship No. BES-2015-074708. This work was partially supported by the Spanish MINECO grants No. MAT2014-53119-C2-1-R and No. MAT2017-83722-R. P.G.S. acknowledges support from ITMO Fellowship Program and megaGrant No. 14.Y26.31.0015 of the Ministry of Education and Science of Russian Federatio
    • …
    corecore