13 research outputs found

    Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting

    No full text
    Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome

    Overview of Celiac Disease in Russia: Regional Data and Estimated Prevalence

    No full text
    Celiac disease (CD) is an autoimmune enteropathy triggered by the ingestion of dietary gluten from some cereals mainly in individuals carrying the HLA-DQ2 and/or HLA-DQ8 haplotypes. As an autoimmune disease, CD is manifested in the small intestine in the form of a progressive and reversible inflammatory lesion due to immune response to self-antigens. Indeed, CD is one of the most challenging medicosocial problems in current gastroenterology. At present, the global CD prevalence is estimated at approximately 1% based on data sent from different locations and available CD screening strategies used. However, it is impossible to estimate global CD prevalence without all the data from the world, including Russia. In this review, we summarize the data on the incidence and prevalence of CD across geographically distinct regions of Russia, which are mostly present in local Russian scientific sources. Our conclusion is that the situation of CD prevalence in Russia is higher than is commonly believed and follows global tendencies that correspond to the epidemiologic situation in Europe, America, and Southwest Asia

    Making Connections:p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis

    No full text
    While viewed as the “guardian of the genome”, the importance of the tumor suppressor p53 protein has increasingly gained ever more recognition in modulating additional modes of action related to cell death. Slowly but surely, its importance has evolved from a mutated genetic locus heavily implicated in a wide array of cancer types to modulating lysosomal-mediated cell death either directly or indirectly through the transcriptional regulation of the key signal transduction pathway intermediates involved in this. As an important step in determining the fate of cells in response to cytotoxicity or during stress response, lysosomal-mediated cell death has also become strongly interwoven with the key components that give the lysosome functionality in the form of the cathepsin proteases. While a number of articles have been published highlighting the independent input of p53 or cathepsins to cellular homeostasis and disease progression, one key area that warrants further focus is the regulatory relationship that p53 and its isoforms share with such proteases in regulating lysosomal-mediated cell death. Herein, we review recent developments that have shaped this relationship and highlight key areas that need further exploration to aid novel therapeutic design and intervention strategies

    Cathepsin S Cleaves BAX as a Novel and Therapeutically Important Regulatory Mechanism for Apoptosis

    No full text
    Certain lysosomal cathepsin proteins have come into focus as being good candidates for therapeutic targeting, based on them being over-expressed in a variety of cancers and based on their regulation of the apoptotic pathway. Here, we report novel findings that highlight the ability of cathepsin S expression to be up-regulated under Paclitaxel-stimulatory conditions in kidney cell lines and it being able to cleave the apoptotic p21 BAX protein in intact cells and in vitro. Consistent with this, we demonstrate that this effect can be abrogated in vitro and in mammalian cells under conditions that utilize dominant-inhibitory cathepsin S expression, cathepsin S expression-knockdown and through the activity of a novel peptide inhibitor, CS-PEP1. Moreover, we report a unique role for cathepsin S in that it can cleave a polyubiquitinated-BAX protein intermediate and is a step that may contribute to down-regulating post-translationally-modified levels of BAX protein. Finally, CS-PEP1 may possess promising activity as a potential anti-cancer therapeutic against chemotherapeutic-resistant Renal Clear Cell Carcinoma kidney cancer cells and for combined uses with therapeutics such as Paclitaxel

    Prophylactic Admission of an in Vitro Reconstructed Complexes of Human Recombinant Heat Shock Proteins and Melanom Antigenic Peptides Activates Anti-Melanoma Responses in Mice

    No full text
    Tumor-derived autologous antigenic peptides when bound to endogenous 70 kDa family heat shock proteins (HSP70) are able to induce effective T-cell responses against tumors. However, efficacy of HSP-based vaccines in clinical practical stand point still has a number of certain limitations including an activation of immune responses against alien non-human HSPs. In this study we reconstructed the complexes of human recombinant HSPs70 (human recombinant HSP70A1B and HSC70 mixture; hrHSPs70) with antigenic low-weight peptides derived from mice B16F10 melanoma cell lysate (PepMCL) in vitro and investigated the prophylactic potential of these complexes to activate anti-tumor immunity in melanoma mouse model. Our results demonstrate that the developed prophylactic vaccine elicits melanoma-specific immune responses and anti-tumor effects against melanoma. These results suggest that hrHSPs70 has capability to reconstitute complexes with peptides obtained from tumor cells lysates in vitro and, therefore, can be used for delivery of multiple antigenic peptides into antigen-presenting cells (APCs) to activate effectors cells. Designed in such a way hrHSPs70-based prophylactic vaccines induce immune responses resulting in a significant efficient prevention of tumor growth and metastases

    Glutenase and Collagenase Activities of Wheat Cysteine Protease Triticain-Α: Feasibility for Enzymatic Therapy Assays

    No full text
    Insufficient and/or improper protein degradation is associated with the development of various human pathologies. Enzymatic therapy with proteolytic enzymes aimed to improve insufficient proteolytic activity was suggested as a treatment of protease deficiency-induced disorders. Since in many cases human degradome is incapable of degrading the entire target protein(s), other organisms can be used as a source of proteases exhibiting activities distinct from human enzymes, and plants are perspective candidates for this source. In this study recombinant wheat cysteine protease Triticain-α was shown to refold in vitro into an autocatalytically activated proteolytic enzyme possessing glutenase and collagenase activities at acidic (or close to neutral) pH levels at the temperature of human body. Mass-spectrometry analysis of the products of Triticain-α-catalyzed gluten hydrolysis revealed multiple cleavage sites within the sequences of gliadin toxic peptides, in particular, in the major toxic 33-mer α-gliadin-derived peptide initiating inflammatory responses to gluten in celiac disease (CD) patients. Triticain-α was found to be relatively stable in the conditions simulating stomach environment. We conclude that Triticain-α can be exploited as a basic compound for development of (i) pharmaceuticals for oral administration aimed at release of the active enzyme into the gastric lumen for CD treatment, and (ii) topically active pharmaceuticals for wound debridement applications
    corecore