12 research outputs found

    Strategies for successful isolation of a eukaryotic transporter

    Get PDF
    The isolation of integral membrane proteins for structural analysis remains challenging and this is particularly the case for eukaryotic membrane proteins. Here we describe our efforts to isolate OsBOR3, a boron transporter from Oryza sativa. OsBOR3 was expressed as both full length and a C-terminally truncated form lacking residues 643-672 (OsBOR3 ). While both express well as C-terminal GFP fusion proteins in Saccharomyces cerevisiae, the full length protein isolates poorly in the detergent dodecyl-β-d-maltoside (DDM). The OsBOR3 isolated in DDM in large quantities but was contaminated with GFP tagged protein, indicated incomplete protease removal of the tag. Addition of the reducing agent dithiothreitol (DTT) had no effect on isolation. Detergent screening indicated that the neopentyl glycol detergents, LMNG, UDMNG and DMNG conferred greater stability on the OsBOR3 than DDM. Isolation of OsBOR3 in LMNG both in the presence and absence of DTT produced large quantities of protein but contaminated with GFP tagged protein. Isolation of OsBOR3 in DMNG + DTT resulted in protein sample that does not contain any detectable GFP but elutes at a higher retention volume than that seen for protein isolated in either DDM or LMNG. Mass spectrometry confirmed that the LMNG and DMNG purified protein is OsBOR3 indicating that the DMNG isolated protein is monomer compared to the dimer isolated using LMNG. This was further supported by single particle electron microscopic analysis revealing that the DMNG protein particles are roughly half the size of the LMNG protein particles. [Abstract copyright: Copyright © 2019 Elsevier Inc. All rights reserved.

    Structural insights into microneme protein assembly reveal a new mode of EGF domain recognition

    No full text
    The obligate intracellular parasite Toxoplasma gondii, a member of the phylum Apicomplexa that includes Plasmodium spp., is one of the most widespread parasites and the causative agent of toxoplasmosis. Adhesive complexes composed of microneme proteins (MICs) are secreted onto the parasite surface from intracellular stores and fulfil crucial roles in host-cell recognition, attachment and penetration. Here, we report the high-resolution solution structure of a complex between two crucial MICs, TgMIC6 and TgMIC1. Furthermore, we identify two analogous interaction sites within separate epidermal growth factor-like (EGF) domains of TgMIC6—EGF2 and EGF3—and confirm that both interactions are functional for the recognition of host cell receptor in the parasite, using immunofluorescence and invasion assays. The nature of this new mode of recognition of the EGF domain and its abundance in apicomplexan surface proteins suggest a more generalized means of constructing functional assemblies by using EGF domains with highly specific receptor-binding properties

    A novel galectin-like domain from Toxoplasma gondii micronemal protein 1 assists the folding, assembly, and transport of a cell adhesion complex

    No full text
    Immediately prior to invasion Toxoplasma gondii tachyzoites release a large number of micronemal proteins (TgMICs) that participate in host cell attachment and penetration. The TgMIC4-MIC1-MIC6 complex was the first to be identified in T. gondii and has been recently shown to be critical in invasion. This study establishes that the N-terminal thrombospondin type I repeat-like domains (TSR1-like) from TgMIC1 function as an independent adhesin as well as promoting association with TgMIC4. Using the newly solved three-dimensional structure of the C-terminal domain of TgMIC1 we have identified a novel Galectin-like fold that does not possess carbohydrate binding properties and redefines the architecture of TgMIC1. Instead, the TgMIC1 Galectin-like domain interacts and stabilizes TgMIC6, which provides the basis for a highly specific quality control mechanism for successful exit from the early secretory compartments and for subsequent trafficking of the complex to the micronemes

    Galactose Recognition by the Apicomplexan Parasite Toxoplasma gondii

    No full text
    Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.Medical Research Council [G0800038, G9601454]Medical Research CouncilSwiss National Foundation UK Research Councils Basic Technology InitiativeSwiss National Foundation UK Research Councils' Basic Technology InitiativeEPSRCEPSRC [GRS/79268, EP/G037604/1]European UnionEuropean Unio
    corecore