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Abstract 

The isolation of integral membrane proteins for structural analysis remains challenging and 

this is particularly the case for eukaryotic membrane proteins. Here we describe our efforts to 

isolate OsBOR3, a boron transporter from Oryza sativa. OsBOR3 was expressed as both full 

length and a C-terminally truncated form lacking residues 643-672 (OsBOR31-642). While both 

express well as C-terminal GFP fusion proteins in Saccharomyces cerevisiae, the full length 

protein isolates poorly in the detergent dodecyl--d-maltoside (DDM). The OsBOR31-642 

isolated in DDM in large quantities but was contaminated with GFP tagged protein, indicated 

incomplete protease removal of the tag. Addition of the reducing agent dithiothriotol (DTT) had 

no effect on isolation. Detergent screening indicated that the neopentyl glycol detergents, 

LMNG, UDMNG and DMNG conferred greater stability on the OsBOR31-642 than DDM. 

Isolation of OsBOR31-642 in LMNG both in the presence and absence of DTT produced large 

quantities of protein but contaminated with GFP tagged protein. Isolation of OsBOR31-642 in 

DMNG + DTT resulted in protein sample that does not contain any detectable GFP but elutes 

at a higher retention volume than that seen for protein isolated in either DDM or LMNG. Mass 

spectrometry confirmed that the LMNG and DMNG purified protein is OsBOR31-642 indicating 

that the DMNG isolated protein is monomer compared to the dimer isolated using LMNG. This 

was further supported by single particle electron microscopic analysis revealing that the 

DMNG protein particles are roughly half the size of the LMNG protein particles.  

 

 

 

 

Introduction 

Integral membrane proteins have roles in a range of essential cellular functions including 

respiration, photosynthesis, membrane transport and mediation of cellular responses to 

environmental change. Given their crucial importance, they represent the targets for >50% of 
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currently available drugs [1]. The last 15 years have seen a significant increase in our 

understanding of the mechanism of action, largely due to the advancement in the technology 

that has allowed the determination of many new high resolution structures [2].  Despite this 

substantial progress, the isolation of membrane proteins for structural studies remains 

challenging [3], due to the highly hydrophobic nature of these molecules. To date most 

structures have been solved by first extracting the protein from the membrane [4], even if, 

ultimately, they are reconstituted back into a lipid environment for further analysis. 

The standard methodology for extraction and solubilisation of membrane proteins in 

an aqueous based solution involves the addition of detergents. The latter are amphiphilic 

molecules that possess both hydrophobic and hydrophilic properties and share this 

characteristic with the membrane proteins and the membrane lipid bilayer [4]. For this reason, 

detergent micelles disrupt the interactions between the membrane protein and the lipid 

environment and encapsulate the protein molecules forming a protein detergent complex [5]. 

A suitable detergent for structural studies extracts the protein from the membrane with high 

efficiency whilst retaining the tertiary/quaternary structure of the protein. A relatively small 

number of detergents including dodecyl--d-maltoside (DDM) and decyl--d-maltoside (DM) 

are typically used for initial membrane protein extraction and solubilisation [6] with these 

detergents also contributing to a substantial number of membrane protein structures [7,8]. 

Although it should be noted that the detergent used for extraction and isolation may be 

exchanged for another prior to crystallisation trials or the detergent used for solubilisation and 

purification can be used in combination with another detergent in the form of mixed micelles 

[8]. However, many membrane proteins are not stable in even these relatively mild detergents 

[9]. The standard detergents tend to have similar overall architecture which is likely to 

contribute to their limited application to the wide variety of integral membrane proteins 

structures [9]. 

Given that many membrane proteins are not stable even in relative mild detergents [9], 

substantial efforts have been made over the last decade to expand the range of detergents 

suitable for membrane protein manipulation (for example [10-12]). Of particular relevance for 
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membrane protein manipulation are the maltose neopentyl glycols (MNGs) and glucose 

neopentyl glycols (GNGs) [13,14], which have been shown to be suitable for both extraction 

and stabilization of membrane proteins and have contributed to the structure determination of 

approximately 30 novel membrane protein structures (see [15] and references cited therein). 

These include ATPases, the GABAA ligand gated ion channel, and the tight junction, claudin, 

as well as a number of GPCRs. The MNGs and GNGs induce greater stability to associated 

membrane proteins compared to standard detergents, suggested to be the result of the 

incorporation of a quaternary C atom into their chemical architecture of the NG detergents. 

The increased stability of the proteins is predicted to be due to the greater stability of the 

detergent micelles [13,14].  

Different approaches include the amphipols [16] and peptidiscs [17], which are not 

suitable for extraction. The amphipols, however, have been successfully used to stabilize 

purified membrane protein for structural studies by Cryo-EM (for example [18,19], following 

detergent exchange. Membrane proteins can also be reconstituted in nanodiscs, a discoidal 

lipid bilayer held together by two helical scaffold proteins, after the solubilisation step. Despite 

still requiring the solubilisation step, this method has the advantage of reducing the amount of 

detergent used and ultimately results in membrane proteins in a more native lipid environment 

which can be studied using a variety of techniques [20]. 

A set of novel agents are based on the styrene maleic acid (SMA) co-polymer 

architecture which have the ability of intercalating between the acyl chains of the membrane 

bilayer and extracting both the integral membrane protein and the lipids. The SMA lipid 

particles (SMALPs) therefore result in a central lipid bilayer surrounded by the polymer [21-

24].  

Boron (B) is an essential plant nutrient with a key role in the generation of ester cross-

linked rhamnogalacturonan II through the formation of apisoyl dimers, essential for structure 

and function of the extracellular matrix [25,26]. B deficiency and toxicity are major barriers to 

efficient crop growth in many parts of the world. B uptake, efflux and distribution are mediated 

by a complex system of integral membrane channels and transporters. The borate 
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transporters have roles in both active transport of B for xylem loading and efflux of B into the 

soil when intracellular B concentrations reach toxic levels [27,28].  Despite the importance of 

these proteins in the effective delivery of B to developing and growing plant tissues, 

remarkably little is known about their mechanism of action. Most of the research carried out 

on BOR proteins has focused on the Arabidopsis thaliana BOR1, a 14 transmembrane domain 

protein, which is expressed in the root endodermis. Indeed, there is a low resolution X-ray 

crystallographic structure of AtBOR1 (PDB: 5L25) [29], although this lacks virtually all the 

soluble loop regions and many mechanistic details about B transport remain to be understood. 

Additional clues on the structure and mechanism of action of BOR proteins come from 

structures of the BOR homologues (AE1 (PDB: 4YZF) [30] and NCBe1 (PDB: 6CAA) [31]) as 

well as the structurally related nucleobase ascorbate transporters, (UapA (PDB 5I6C) [32] and 

UraA (PDB: 5XLS) [33].  

Several AtBOR1 homologues exist in rice (Oryza sativa) and here we describe efforts 

to isolate the OsBOR3 homologue (share 57.8% sequence identity with AtBOR1) both as full 

length and C-terminally truncated versions in an effort to obtain sufficiently pure and stable 

protein for structural studies. We purified the two different forms of OsBOR3 and found that 

isolation of the proteins was highly sensitive to the detergent used. The quality of the 

preparations increased when we used either LMNG or DMNG, compared to DDM.  

 

Methods 

Construct generation 

The open reading frame of OsBOR3 (Accession code: AY339063) was obtained from the Rice 

Genome Resource Centre, Tsukuba, Japan). The full-length OsBOR3 and C-terminally 

truncated versions, OsBOR31-642 (missing amino acid residues 643-672) were expressed as 

C-terminal yeast enhanced GFP fusion proteins using the S. cerevisiae expression vector 

pDDGFP2 and the FGY217 protease deficient strain [34] as previously described [32,35] using 

the oligonucleotide primers detailed in Table 1. These primers contain homologous 

recombination domains allowing direct insertion of the gene into the expression vector.  
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Table 1 Primer sequences 

Construct Forward primer Reverse primer 

OsBOR3 5’ACCCCGGATTCTAGAACTAGTGGATCC

CCCATGGAACTACTAAAGATTCCCTTTAA

GGGTGTCGTC3’ 

5’AAATTGACCTTGAAAATATAAATTTTC

CCCGCACTCGGACCAGTTTTCTGTATC

TCCACACCTGGG3’ 

OsBOR31-642 As above 5’AAATTGACCTTGAAAATATAAATTTTC

CCCTCTGTGCTTTAGCTCTCCACGGTT

AGTTGTCAGCTC3’ 

 

 

Small scale expression and membrane preparation  

Expression and purification were carried out based on previously described methods [36,37]. 

For expression of the individual constructs, single colonies from yeast transformations were 

incubated overnight in 5 mL of -URA media supplemented with 2 % glucose at 30 C with 300 

rpm shaking. The cells were diluted to an OD600 of 0.12 in 50 mL -URA media supplemented 

with 0.1 % glucose and incubated at 30 C and 300 rpm shaking until an OD600 of 0.6 was 

reached. Protein expression was induced by adding 25 % galactose in -URA media to a final 

concentration of 2 %. Cells were incubated for a further 22 hours. Cells were pelleted by 

centrifugation at 3000 g for 5 minutes at 4 C and resuspended in 1 mL CRB (50 mM Tris (pH 

7.5), 1 mM EDTA, 0.6 M sorbitol) supplemented with cOmpleteTM EDTA free protease inhibitor 

tablets (Roche). 200 L resuspended cells were analysed by a SpectraMax M2e fluorometer 

(Molecular Devices) using an excitation wavelength of 488 nm and an emission wavelength 

of 512 nm to assess the degree of protein expression by measuring the levels of GFP 

fluorescence in the sample. Glycerol stocks of the samples with the highest protein expression 

were used for large scale protein expression. The cells were lysed using 0.5 mm glass beads 

at 400L mL-1 and  a FastPrep_24 5G (MP) with pulses for 20 seconds at a speed of 6 m/sec, 

repeated 6 times. The cells were kept on ice for 2 minutes between each round of lysis. Intact 
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cells were pelleted by centrifugation at 14000 g for 30 seconds. The supernatant was 

harvested and subjected to centrifugation at 22000 g for 1 hour at 4 C to pellet membranes 

which were resuspended in 150 L MRB (20 mM Tris (pH 7.5), 0.3 M sucrose, 0.1 mM calcium 

chloride). Membranes were flash-frozen in liquid nitrogen and stored at -80 C. The 

membranes obtained were used to assess expression of the different constructs and for FSEC 

analysis.  

 

FSEC analysis 

Aliquots of membranes (150 L) prepared from yeast cell cultures overexpressing OsBOR3 

were added to 1 mL solubilisation buffer (1x PBS (pH 7.5), 100 mM NaCl, 1% DDM (w/v)) 

supplemented with cOmpleteTM EDTA free protease inhibitor tablets (Roche). Membranes 

were solubilised by gentle mixing at 4 C on orbital shaker for 1 hour. Insoluble membranes 

were pelleted by centrifugation for 1 hour at 15000 g at 4 C. 500 L supernatant was loaded 

onto a Superose 6 10/300 gel filtration column equilibrated with FSEC buffer (20 mM Tris (pH 

7.5), 150 mM NaCl, 0.03 % DDM (v/v)) and fractions were collected on a 96 well optical bottom 

plate. Fluorescence of the individual fractions was measured using a SpectraMax M2e 

fluorometer (Molecular Devices) (λexcitation = 488 nm, λemission = 512 nm). 

 

Large scale OsBOR3 purification 

For large scale production of the OsBOR3 proteins, membranes were prepared from a 12 L 

S. cerevisiae culture using a cell disruptor (Constant Systems) and differential centrifugation 

to remove unbroken cells and then harvest the membranes. The membranes  were solubilised 

for 1 hour at 4C with stirring in a total of 150 mL membrane solubilisation buffer (1x PBS (pH 

7.5), 100 mM NaCl, 10 % glycerol (v/v), 1 % n-dodecyl--D-maltoside (DDM) or 1% DMNG or 

1% LMNG (w/v)) supplemented with protease inhibitor tablets (Roche). Remaining insoluble 

material was pelleted by centrifugation at 100000 g for 45 minutes. The supernatant was 

loaded onto a 5 mL His-trap column (G.E. Biosciences) equilibrated with affinity buffer (1x 
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PBS (pH 7.5), 100 mM NaCl, 10 mM imidazole, 10 % glycerol, 0.03 % DDM (v/v)). The column 

was washed three times with 50 mL affinity buffer supplemented with 30 mM, then 50 mM, 

and finally 70 mM imidazole. His-tagged OsBOR3 was eluted from the column with 50 mL 

elution buffer (1x PBS (pH 7.5), 100 mM NaCl, 350 mM imidazole, 10 % glycerol, 0.03 % DDM 

(v/v)). Eluted protein was diluted into a total of 100 mL SEC buffer (20 mM Tris (pH 7.5), 150 

mM NaCl, 2 x DDM, CxEx or Triton X-100). The His-tag was removed by incubating OsBOR3 

with TEV protease at a ratio of 1:1 overnight. The protein sample was filtered using a 0.22 m 

filter (Millex) and loaded onto a 5mL His-trap column (G.E. Biosciences) equilibrated with SEC 

buffer supplemented with 10 mM imidazole. Non-His-tagged OsBOR3 was recovered in the 

initial column flow through and via washing the column with 25 mL SEC buffer supplemented 

with 10 mM imidazole. OsBOR3 was concentrated to 500 L using a 100 kDa MWCO filter 

(Millipore). Aggregated material was removed by centrifugation at 22000 g for 10 minutes at 

4C. OsBOR3 was loaded onto a Superdex 200 10/300 gel filtration column pre-equilibrated 

with SEC buffer. Elution fractions were analysed by SDS-PAGE using precast NovexTM 

WedgeWellTM 10% Tris-Glycine Gel (Invitrogen). Protein bands were stained using 

Coomassie Instant Blue (Expedeon) and visualised using a BIO-RAD ChemiDoc MP Imaging 

System. In gel fluorescence was visualised using a Fujifilm LAS-3000 imager. 2mM DTT was 

added in all buffers in the protein purifications were DTT was used. 

 

Thermal denaturation analysis 

Thermal denaturation assays were carried out to assess the stability of the OsBOR3 in a range 

of different detergents typically used for preparation of protein for native MS analysis. In each 

case 1 l of pure OsBOR3 at ~10 mg/ml and in buffer containing 2 x CMC DDM was diluted 

into 150 l of thermal denaturation buffer (150 L 20 mM Tris (pH 7.5), 150 mM NaCl, 2x CMC 

detergent of interest) in a 96 well clear bottom plate. The detergents tested were DDM, n-

decyl--D-maltoside (DM), n-nonyl--D-maltoside (NM), lauryl maltose neopentyl glycol 

(LMNG), undecyl maltose neopentyl glycol (UDMNG) decyl maltose neopentyl glycol (DMNG) 
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and octyl glucose neopentyl glycol (OGNG).  In the dark, 3 μl (40 μg/ml) 7-diethylamino-3-(4’-

maleimidylphenyl)-4-methylcoumarin (CPM) dye diluted in thermal denaturation buffer 

(Invitrogen) was added to each well. The plate was incubated at 40°C and fluorescence 

measured every 5 minutes for 2 hours using a SpectraMax plate reader (Molecular Devices) 

(λexcitation = 387 nm, λemission = 463 nm). The raw fluorescence readings were normalized to the 

most unstable condition in order to calculate the percentage of relative unfolded protein. The 

data were fitted to a single exponential decay curve using GraphPad Prism 6. 

 

Long term stability analysis 

Aliquots of pure OsBOR3 protein at 10 mg/ml were stored at either 4C or 20C. On day 1, 2 

and 4 1ul protein was removed from the individual aliquots, mixed 1:1 with NOVEXTM Tris-

Glycine SDS Sample Buffer, 2X (Invitrogen) and stored at -20C until further use.  After 4 days 

all the samples were separated on SDS-PAGE gels and the protein bands visualised using 

Coomassie Blue gel Stain. 

 

Negative stain EM 

Negative stain EM was used to assess sample quality during purification. 2.5 μl of  OsBOR31-

642 at a concentration of 0.01 mg/ml was applied to glow-discharged carbon-coated copper 

grids (400 mesh) and stained with 2% uranyl acetate. Data were collected on a 120 keV Tecnai 

T12 microscope. 

 

Results and Discussion 

Expression of the different OsBOR3 constructs and isolation of the protein in DDM 

Both the WT and OsBOR31-642 constructs expressed well, to levels of 0.6 mg/L and 0.95 mg/L 

respectively. A summary of expression levels, solubilisation efficiencies and purification yields 

is given in Table 2. 
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Table 2 

Summary data for the different constructs and detergents  

 Construct 

 WT OsBOR3 OsBOR31-642 

Expression (mg/L) 0.600 0.950 

Solubilisation efficiency in DDM (%) 80 85 

Purification yield in DDM (mg/L) 0.015 0.100 

Purification yield in DDM + DTT (mg/L)  nd 0.100 

Solubilisation efficiency in LMNG (%) nd 80 

Purification yield in LMNG (mg/L) nd 0.125 

Purification yield in LMNG + DTT (mg/L) nd 0.125 

Solubilisation efficiency in DMNG (%) nd 80 

Purification yield in DMNG + DTT (mg/L) nd 0.125 

Nd = not determined 

 

 The first protein to be purified was WT OsBOR3 in DDM. The SEC trace indicated a very 

heterogeneous sample with multiple overlapping peaks (Figure 1A). The SDS-PAGE analysis 

of some of these fractions indicated a single prominent band at ~30kDa (Figure 1B) present 

in all samples. It is possible that a number of different aggregated forms of the OsBOR3 are 

isolating on the SEC column that dissociate into a single species on the gel. The high 

heterogeneity and very low overall yield of full length OsBOR3 (0.015 mg/L) meant that this 

construct was not explored further.  
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We then attempted isolation of OsBOR31-642 in DDM and achieved much better 

results. The SEC trace gave a single peak with a retention volume of about 11 mls (Figure 

1C) and the fractions tested yielded one prominent band of approximately 80kDa on an SDS-

PAGE (Figure 1D), upper panel although some aggregated material was observable in the 

wells. Given the fact that membrane proteins often appear smaller than they are on SDS-

PAGE gels [38] and the expectation that OsBOR3 is likely to be a dimer [29,30,39] it wasn’t 

clear to what the bands we were seeing corresponded. The yield of OsBOR31-642 was ~ 0.100 

mg/L, and although this together with the homogeneity of the sample represented a significant 

improvement compared to the full length OsBOR3, the material was contaminated with GFP 

(Figure 1D, lower panel). Indeed, following concentration to 10mg/ml the protein sample was 

visibly green and it is possible that the ~80kDa band we see which on the Coomassie stain 

gel is the OsBOR31-642 + GFP which is also clearly visible on the in-gel fluorescence.  

Despite a clear monodispersed peak for the of OsBOR31-642 the gel image indicated 

the sample was markedly heterogeneous. This might be an artefact of the gel running process 

or genuine heterogeneity of the sample.  In an effort to deal with any possible aggregation that 

might be occurring as the result of non-specific disulphide bridges (there are 7 cysteines in 

OsBOR31-642) and contributing to heterogeneity we attempted purification of the protein in the 

presence of 2 mM DTT. The SEC trace we obtained looked slightly worse than for DDM alone 

but a single prominent band of roughly 60 kDa is now apparent on the gel, although a weaker 

band of ~80 kDa is also visible (Figure 2B, upper panel). In addition, the sample contains 

fluorescent protein which also migrates to ~80kDa (Figure 2B, lower panel). Thus, it is possible 

that the sample contains both OsBOR31-642 that has effectively had the GFP cleaved (60 kDa) 

as well as uncleaved fusion protein (~80 kDa).    

In order to improve the quality of the protein, we explored the use of other detergents 

using thermal denaturation analysis of the most promising construct, OsBOR31-642, purified in 

DDM and then diluted in a range of alternative detergents. The CPM dye used becomes 
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fluorescent upon binding to free Cys residues as they become available during protein 

unfolding. The data shown in Figure 2C reveals that the protein was more stable in the MNGs 

tested, LMNG, UDMNG and DMNG compared to the alkyl maltosides (DDM, NM). As there 

was no discrimination between the three MNGs we chose initially to purify the OsBOR31-642 

in LMNG as it had been used successfully for isolation and crystallisation of AtBOR1 [29].  

 

Isolation in LMNG 

The OsBOR31-642 was both extracted in (1%) and purified (0.01%) in LMNG. The LMNG 

extracted OsBOR31-642 with a solubilisation efficiency of 80%. Isolation carried out as 

described above for DDM yielded a  greater quantity of protein (0.125 vs 0.100 mg/L) which 

eluted from the SEC column as a single large peak at an elution volume of ~11 mls (Figure 

3A). SDS-PAGE and in-gel fluorescence analysis of the individual fractions revealed that the 

protein sample was both very heterogeneous and heavily contaminated with fluorescent 

material, most likely uncleaved or partially cleaved OsBOR31-642-GFP protein (Figure 3B). As 

for the protein isolated in DDM, following concentration through a MWCO filter the protein 

sample was visibly green.  A prominent band of ~200 kDa which is notably fluorescent may 

correspond to an aggregated form of the uncleaved protein. The band at ~80 kDa may be 

OsBOR31-642 with the GFP still attached as it is highly fluorescent. A band at ~60 kDa is 

possibly cleaved OsBOR31-642. Isolation of the protein in LMNG + 2 mM DTT resulted in much 

less heterogeneity of the sample on the SDS-PAGE gel (Figure 3C and D, upper panel) which 

two main bands (~60 kDa and ~80 kDa). We postulated that both proteins are OsBOR31-642, 

one the monomer and one the dimer form. MS confirmed that both bands are OsBOR31-642 

but the larger bands were contaminated with GFP. This is also clear from Figure 3C and D. 

This wasn’t always the case however (Figure 3E and 3F) as on some occasions it was possible 

to isolate the protein in LMNG with little or no contamination with fluorescent protein. The 

reasons for this variability in the protein quality are unclear, as are the precise nature of the 

effects of DTT. However, given the fact that the presence of DTT facilitated interpretation of 
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the gel images and it had no negative effect on the apparent protein quality we retained this 

in further purification experiments. Long term stability analysis (Figure 3G) indicates that the 

LMNG isolated OsBOR31-642 material was reasonably stable at 4C, but subject to 

degradation at 20C.  

 

Isolation in DMNG 

Ready availability of DMNG made this the next obvious choice of detergent. DMNG has similar 

stabilising effects OsBOR31-642 as LMNG as indicated by the thermal denaturation analysis 

and has been successfully used for high resolution structure determination of membrane 

proteins, including the human GABAA receptor [40]. Solubilisation efficiency in this detergent 

was 80%, identical to LMNG. The SEC profile of OsBOR31-642 in DMNG revealed the 

presence of two peaks, a smaller peak one at an elution volume of ~11mls and a much larger 

peak at an elution volume of ~12.5 mls (Figure 4A). SDS-PAGE analysis indicated that the 

protein from both peaks migrated identically as a ~60 kDa band (Figure 4B, upper panel). 

Mass spectrometry analysis (data not shown) confirmed that the protein from both peaks was 

OsBOR31-642. It seems likely that in DMNG the protein is present in two forms, likely the 

monomer (migrating at ~ 60kDa on the SDS-PAGE gel and eluting at 12.5 mls from the SEC 

column) and the dimer (which migrates as the monomer form on the SDS-PAGE gel and elutes 

at 11 mls from the SEC column). The DMNG isolated protein is highly homogeneous and 

contains only very low levels of fluorescence (Figure 4B, lower panel). Long term stability 

analysis indicated that the protein in the larger peak (probable monomer) is also highly stable, 

retaining almost full integrity as revealed by SDS-PAGE analysis over a four day incubation 

at 4C or 20C (Figure 4C).  

 

Negative stain EM analysis 

Negative stain of both LMNG and DMNG isolated OsBOR31-642 was carried out (Figure 5). 

Both proteins seem to be visible as single particles with the LMNG particles bigger than the 
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DMNG ones, possibly reflecting a dimeric rather than a monomeric state of the protein. The 

DMNG images were of better quality than the LMNG although this could just require additional 

screening.  

 

Discussion 

Isolation of integral membrane proteins in their folded and correct quaternary state 

remains a challenge for structure determination. Protein engineering and development of 

novel detergents represent two ways to facilitate the isolation and stabilisation of membrane 

proteins [41]. Here we applied both approaches to the successful isolation of both monomeric 

and dimeric forms of OsBOR3.  

The removal of what is likely to be a highly flexible extended C-terminal domain (the 

last 30 residues), as reported for the AtBOR1 protein [29], dramatically improved recovery of 

OsBOR3 protein in DDM in terms of both yield and quality of material. The full length OsBOR3 

has 9 Cys whereas the truncated OsBOR31-642 contains 7. The odd number of Cys might 

contribute to formation of non-specific disulphide bonds. Although, the SEC profiles changed 

little upon addition of DTT, the presence of this agent did make interpretation of the gel images 

easier. The actual effects of DTT remain unclear.  However, the OsBOR31-642 purified in the 

presence of DDM +/- DTT was contaminated with fluorescent protein strongly suggesting that 

GFP was not effectively cleaved from the transporter during isolation. It is possible this is the 

result of the DDM micelle shielding the TEV cleavage site given the closer proximity of the C-

terminus of OsBOR3 in the truncated protein or that non-specific oligomerisation occurring as 

a result of the disulphide bridge formation limits access of the TEV enzyme. Contamination 

with fluorescent protein was sometimes also the case for isolation of OsBOR31-642 in LMNG 

which also forms a large micelle.  

Protein obtained in the slightly smaller micelle forming DMNG + DTT was not 

contaminated with fluorescent protein supporting the argument that it is the detergent which 

is limiting TEV cleavage.  A further key difference was that the DMNG isolated protein eluted 
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at a substantially higher retention volume. This taken together with 1) the almost identical 

SDS-PAGE results obtained for both DMNG and LMNG + DTT and, 2) MS analysis confirming 

that protein isolated in both detergents is OsBOR31-642 strongly indicate that DMNG isolated 

protein is in a different oligomeric status. It is difficult to be confident from SDS-PAGE analysis 

precisely what species is present in an individual sample. Clearly oligomers are prone to 

dissociate into the monomeric form during electrophoresis and migration of individual 

membrane proteins is anomalous with membrane proteins typically appearing smaller than 

they are on the gel [38]. However, that protein isolated in DMNG and LMNG contains 

predominantly monomer and dimer is supported by the sizes of the particles obtained by 

negative stain electron microscopy in each case. 

Given the similarity between OsBOR3 and other SLC4 proteins [29-31] as well as 

UapA [32] and UraA [33] it seems likely that the OsBOR3 dimer is physiologically relevant. 

Several of these proteins have been suggested to transport via an elevator mechanism 

requiring a substantial movement of approximately 10 Å of the substrate binding, or core, 

domain of a monomer against the dimerization, or gate, domain. It has been suggested that 

this radical structural movement is facilitated by the stabilising interactions formed between 

two monomers and possibly involving interactions with membrane lipids [42]. In the case of 

the BOR homologue from S. cerevisiae, ScBOR1p, we now have evidence that the protein 

can function as a monomer [43], although we can’t rule out that the dimer plays a role in 

function. It is not clear which oligomeric states is the functional form of OsBOR3, a feature 

that is challenging to definitively decipher even if a high-resolution structure is available.  

The related protein AtBOR1 was isolated successfully in LMNG [29], while the C-

terminal transmembrane domain of human homologue AE1 was isolated initially in 

Octaethylene glycol monododecyl ether (C12E8) followed by complex formation with a Fab 

fragment and exchange into DM [30]. In both cases a structure of a dimer was determined but 

it remains to be seen if this represents the functional form of the proteins. The fact that 

OsBOR3 can successfully be isolated both in the dimeric and monomeric forms indicates that 

the dimer is not essential for stability and structural integrity of the individual monomers. 
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Figure 1 Isolation of OsBOR3 proteins in DDM. Size exclusion profiles of A) WT OsBOR3 

and C) OsBOR31-642 are shown. SDS-PAGE (upper panels) and in-gel fluorescence analysis 

(lower panels) for B) WT OsBOR3 and D) OsBOR31-642 are also shown. M= Molecular weight 

markers, fM = fluorescent molecular weight markers, L = concentrated protein solution loaded 

onto SEC column. The red lines indicate the SEC fractions that were analysed on SDS-PAGE.  

 

Figure 2 Isolation of OsBOR31-642 in DDM + DTT. Size exclusion profile A) and SDS-PAGE 

(upper panel) and in-gel fluorescence analysis (lower panels) B) are shown. M= Molecular 

weight markers, fM = fluorescent molecular weight markers, L = concentrated protein solution 

loaded onto SEC column. The red lines indicate the SEC fractions that were analysed on SDS-

PAGE. C) Thermal denaturation analysis of OsBOR31-642 in a range of detergents. The 

denaturation curves obtained in the individual detergents are indicated by the key.  

 

Figure 3 Isolation of OsBOR31-642 in LMNG. Size exclusion profiles of OsBOR31-642 

isolated in LMNG A) and LMNG + DTT C)+E) are shown. SDS-PAGE (upper panels) and in-

gel fluorescence analysis (lower panels) for B) LMNG and D)+F) LMNG + DTT isolated protein 

are also shown. M= Molecular weight markers, fM = fluorescent molecular weight markers, L 

= concentrated protein solution loaded onto SEC column. The red and blue lines indicate the 

SEC fractions that were analysed on SDS-PAGE. G) Long term stability analysis of 

OsBOR31-642 isolated in LMNG + DTT.  Protein in Lane labelled as 0 is the protein analysed 

immediately after isolation, i.e. Day 0. The protein samples taken on subsequent days are 

indicated. 

 

Figure 4 Isolation of OsBOR31-642 in DMNG + DTT. Size exclusion profile A) and SDS-

PAGE (upper panel) and in-gel fluorescence analysis (lower panels) B) are shown. M= 

Molecular weight markers, fM = fluorescent molecular weight markers, L = concentrated 

protein solution loaded onto SEC column. The red lines indicate the SEC fractions that were 
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analysed on SDS-PAGE. Note the difference in retention volume of the DMNG isolated protein 

compared to that isolated in the other tested detergents. Long term stability analysis of 

OsBOR31-642 isolated in LMNG + DTT. Protein in Lane labelled as 0 is the protein analysed 

immediately after isolation, i.e. Day 0. The protein samples taken on subsequent days are 

indicated. 

 

Figure 5 Negative stain analysis of OsBOR31-642. Negative stain images of protein isolated 

in LMNG A) and DMNG B) + DTT. The scale bar represents 50 nm.  

 

 

 

 

 


