51 research outputs found

    the case study of an innovative small scale biomass waste gasification heat and power plant contextualized in a farm

    Get PDF
    Abstract The use of biomass waste in high efficient low pollutants emissions micro-cogeneration plants overpasses the main biomass barriers: competition with the food and material uses, dispersion of a low energy density fuel and high emissions. Evaluations of present technical aspects, economic benefits and their future projections are very important to bring into focus the needs of the technological development of this energy application. This paper is focused on a small (250 kWth) steam gasification fluidized bed and hot gas conditioning system, contextualized in the case study of a farm situated near Rome. Since most of usable biomass waste comes from agriculture, appraisal of applicability to real rural contexts deserves closer examination, considering the necessity of a small size solution as well. A feasibility study of an actual employment of this energy system has included: biomass availability and energy consumption analysis, biomass and gasification tests, power plant sizing, using experimental data and chemcad simulation. Finally an economic analysis has been carried out by varying the main economic parameters. Olive pruning are confirmed as very suitable, and in this case, able to satisfy the farm energy consumption. Global electrical efficiency of 25% can be achieved without any auxiliary fuel consumption. Consumption of 60% of the heat generated are required, meanwhile investment and biomass costs up to 8000 €/kW and 100 €/t can be sustained, especially if the farm electricity cost are higher than 0.15 €/kWh

    Poplar from phytoremediation as a renewable energy source:gasification properties and pollution analysis

    Get PDF
    Biomass gasification is a very efficient process to produce clean energy in the form of a fuel gas (syngas). Hazelnut shells and poplar have good energy production potential and they are abundant in nature. Hazelnut shells have the characteristics of a very good fuel and poplar is among the fastest growing trees; furthermore, poplar demonstrated the capability to absorb organic contaminants (i.e. heavy metals) from the soil in which they are cultivated. However, poplar is not usually used for biomass gasification and its potential is not fully assessed. Here, 3 types of biomass, hazelnut shells (HS), simple poplar (P) and poplar coming from a phytoremediation procedure (PHYP), were chosen as representative samples to be characterized and tested in a steam gasification process carried out on a bench scale fluidized bed gasifier. A comparison is reported on gasification results, such as gas composition, tar production and gas yield for the biomass feedstocks mentioned above. It was concluded that hazelnut shells and poplar (P and PHYP) could be easily gasified in a fluidized bed gasifier, thus producing a good quality gas with low polluting by-products. The PHYP sample showed lower tar content and higher gas yield. It is guessed that Ca and Mg, found in higher quantities in the PHYP sample, could have had a catalytic effect in tar reforming thus producing lower quantity of heavy hydrocarbons

    Steam Gasification of Lignite in a Bench-Scale Fluidized-Bed Gasifier Using Olivine as Bed Material

    Get PDF
    The gasification of lignite could be a promising sustainable alternative to combustion, because it causes reduced emissions and allows the production of syngas, which is a versatile gaseous fuel that can be used for cogeneration, Fischer-Tropsch synthesis, or the synthesis of other bio-fuels, such as methanol. For the safe and smooth exploitation of syngas, it is fundamental to have a high quality gas, with a high content of H2 and CO and minimum content of pollutants, such as particulate and tars. In this work, experimental tests on lignite gasification are carried out in a bench-scale fluidized-bed reactor with olivine as bed material, chosen for its catalytic properties that can enhance tar reduction. Some operating parameters were changed throughout the tests, in order to study their influence on the quality of the syngas produced, and pressure fluctuation signals were acquired to evaluate the fluidization quality and diagnose correlated sintering or the agglomeration of bed particles. The e ect of temperature and small air injections in the freeboard were investigated and evaluated in terms of the conversion eciencies, gas composition, and tar produced.The authors kindly acknowledge the financial support of the European Project LIG2LIQ (RFCS-01-2017 GA796585) co-funded by the European Commission managed Research Fund for Coal and Steel (RFCS)

    Steam Gasification of Lignite in a Bench-Scale Fluidized-Bed Gasifier Using Olivine as Bed Material

    Get PDF
    The gasification of lignite could be a promising sustainable alternative to combustion, because it causes reduced emissions and allows the production of syngas, which is a versatile gaseous fuel that can be used for cogeneration, Fischer-Tropsch synthesis, or the synthesis of other bio-fuels, such as methanol. For the safe and smooth exploitation of syngas, it is fundamental to have a high quality gas, with a high content of Hâ‚‚ and CO and minimum content of pollutants, such as particulate and tars. In this work, experimental tests on lignite gasification are carried out in a bench-scale fluidized-bed reactor with olivine as bed material, chosen for its catalytic properties that can enhance tar reduction. Some operating parameters were changed throughout the tests, in order to study their influence on the quality of the syngas produced, and pressure fluctuation signals were acquired to evaluate the fluidization quality and diagnose correlated sintering or the agglomeration of bed particles. The effect of temperature and small air injections in the freeboard were investigated and evaluated in terms of the conversion efficiencies, gas composition, and tar produced

    WP2T3_DataN3 Screening of tar catalysts for catalytic filter (UNIVAQ)

    No full text
    Raw results of laboratory-scale Study of Nickel-catalyst Pellets Performance for Tar Steam Reforming Obtained from Biomass Gasification (https://doi.org/10.3303/CET2292110
    • …
    corecore