23 research outputs found

    Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma?

    Get PDF
    Transverse (t)-tubules are invaginations of the plasma membrane that form a complex network of ducts, 200–400 nm in diameter depending on the animal species, that penetrates deep within the cardiac myocyte, where they facilitate a fast and synchronous contraction across the entire cell volume. There is now a large body of evidence in animal models and humans demonstrating that pathological distortion of the t-tubule structure has a causative role in the loss of myocyte contractility that underpins many forms of heart failure. Investigations into the molecular mechanisms of pathological t-tubule remodelling to date have focused on proteins residing in the intracellular aspect of t-tubule membrane that form linkages between the membrane and myocyte cytoskeleton. In this review, we shed light on the mechanisms of t-tubule remodelling which are not limited to the intracellular side. Our recent data have demonstrated that collagen is an integral part of the t-tubule network and that it increases within the tubules in heart failure, suggesting that a fibrotic mechanism could drive cardiac junctional remodelling. We examine the evidence that the linkages between the extracellular matrix, t-tubule membrane and cellular cytoskeleton should be considered as a whole when investigating the mechanisms of t-tubule pathology in the failing heart

    Lithium and KB-R7943 effects on mechanics and energetics of rat heart muscle

    Get PDF
    The role of calcium influx on energy expenditure during cardiac contraction was studied. For this purpose; the described ability of lithium and KB-R 7943 (KBR) to diminish Ca entry through Na-Ca exchanger (Ponce-Hornos & Langer, J Mol Cell Cardiol 1980, 12, 1367, Satoh et al., Circulation 2000, 101, 1441) were used. In isolated contractions (contractions elicited after at least 5 min of rest) LiCl 45 mmol L -1 decreased pressure developed and pressure-time integral from 42.3 ± 2.7 and 14.5 ± 1.2 to 32.1 ± 3.4 mN mm -2 and 8.3 ± 0.9 mN mm -2 s, respectively. A similar effect was observed in regular contractions (at 0.16 Hz stimulation). The presence of KBR (5 μmol L -1) in the perfusate induced a slight but not significant decrease in pressure developed and pressure-time integral in steady-state contractions. As it was previously described, the heat involved in a heart muscle contraction can be decomposed into several components (H 1, H 2, H 3 and H 4), but only one (H 3) was associated with force generation. While H 3 decreased with lithium in both types of contractions, H 3/PtI ratio remained unaltered, indicating that the economy for pressure maintenance was unaffected. To further investigate the role of Ca entry on force development, a condition in which the contraction is mainly dependent on extracellular calcium was studied. An 'extra' stimulus applied 200 ms after the regular one in a muscle stimulated at 0.16 Hz induces a contraction with this characteristic (Marengo et al., Am J Physiol 1999, 276, H309). Lithium induced a strong decrease in pressure-time integral and H 3 associated with this contraction (43 and 45%, respectively) with no change in H 3/PtI ratio. Lithium also reduced (53%) an energy component (H 2) associated with Ca cycling. The use of KBR showed qualitatively similar results [i.e. a 33% reduction in pressure-time integral associated with the extrasystole (ES) with no changes in H 3/PtI ratio and a 30% reduction in) the H 2 component]. Li and KBR effects appear to be additive and in the presence of 45 mmol L -1 Li and 5 μmol L -1 KBR the extrasystole was abolished in 77%. Lithium and KBR effects particularly for the extrasystole can be explained through the inhibition of Ca entry via Na-Ca exchange giving support to the participation of the Na-Ca exchanger in the Ca influx from the extracellular space. In addition, the results also suggest the possibility of an effect of Li on an additional Ca sensitive locus (different than the Na-Ca exchanger). In this connection, in isolated contractions lithium decreased the energy release fraction related to mitochondrial processes (H 4) increasing the economy of the overall cardiac contraction.Fil: Bonazzola, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Egido, P.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Marengo, Fernando Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Savio Galimberti, E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Ponce Hornos, Jorge Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; Argentin
    corecore